The Effect of Heat Transfer Coefficient, Local Wet Bulb Temperature and Droplet Size Distribution Function on the Thermal Performance of Sprays

1977 ◽  
Vol 99 (3) ◽  
pp. 381-385 ◽  
Author(s):  
K. H. Chen ◽  
G. J. Trezek

Energy balance considerations indicate that the droplet heat transfer coefficient, local wet bulb temperature, and droplet size distribution function are the basic parameters affecting spray system thermal performance. Within the range of available experimental data, results indicate that the Ranz-Marshall correlation gives an agreement to within ±5.0 percent of measured droplet temperatures at the pond surface for a medium wind range of between 2.5 and 5 m/s. The local wet bulb temperature is taken as the arithmetic mean of the initial and final wet bulb temperatures. For wind speeds greater than 3.5 m/s, the local wet bulb can be taken as the ambient. The modified log normal distribution of Mugele and Evans provides the best description of the droplet size distribution. Further, through the introduction of a correction term, the Spray Energy Release (SER) can be deduced from single droplet information.

2001 ◽  
Vol 124 (1) ◽  
pp. 182-185 ◽  
Author(s):  
Jianming Cao

Droplet size distribution function and mean diameter formulas are derived using information theory. The effects of fuel droplet evaporation and coalescence within combustion chamber on the droplet size are emphasized in nonreactive diesel sprays. The size distribution function expressions at various spray axial cross sections are also formulated. The computations are compared with experimental data and KIVA-II code. A good agreement is obtained between numerical and experimental results. Droplet size distribution and mean diameter at various locations from injector exit and at various temperature conditions are predicted. The decreases of droplet number and variations of mean diameter are computed at downstream and higher temperature.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1705-1708
Author(s):  
Xiao Lu Wang ◽  
Da Yu Huang

In this paper, condensation mechanism of the Freon refrigerants outside spiral grooved tube is discussed. The heat transfer coefficient of Freon refrigerants condensation outside spiral grooved tube is obtained. A calculation example of heat transfer coefficient on the tube bundle of condenser with baffle bars is presented. It shows the excellent thermal performance of the spiral groove tubes compared to smooth tubes.


1997 ◽  
Vol 119 (2) ◽  
pp. 381-389 ◽  
Author(s):  
M. E. Taslim ◽  
C. M. Wadsworth

Turbine blade cooling, a common practice in modern aircraft engines, is accomplished, among other methods, by passing the cooling air through an often serpentine passage in the core of the blade. Furthermore, to enhance the heat transfer coefficient, these passages are roughened with rib-shaped turbulence promoters (turbulators). Considerable data are available on the heat transfer coefficient on the passage surface between the ribs. However, the heat transfer coefficients on the surface of the ribs themselves have not been investigated to the same extent. In small aircraft engines with small cooling passages and relatively large ribs, the rib surfaces comprise a large portion of the passage heat transfer area. Therefore, an accurate account of the heat transfer coefficient on the rib surfaces is critical in the overall design of the blade cooling system. The objective of this experimental investigation was to conduct a series of 13 tests to measure the rib surface-averaged heat transfer coefficient, hrib, in a square duct roughened with staggered 90 deg ribs. To investigate the effects that blockage ratio, e/Dh and pitch-to-height ratio, S/e, have on hrib and passage friction factor, three rib geometries corresponding to blockage ratios of 0.133, 0.167, and 0.25 were tested for pitch-to-height ratios of 5, 7, 8.5, and 10. Comparisons were made between the rib average heat transfer coefficient and that on the wall surface between two ribs, hfloor, reported previously. Heat transfer coefficients of the upstream-most rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared. It is concluded that: 1 The rib average heat transfer coefficient is much higher than that for the area between the ribs; 2 similar to the heat transfer coefficient on the surface between the ribs, the average rib heat transfer coefficient increases with the blockage ratio; 3 a pitch-to-height ratios of 8.5 consistently produced the highest rib average heat transfer coefficients amongst all tested; 4 under otherwise identical conditions, ribs in upstream-most position produced lower heat transfer coefficients than the midchannel positions, 5 the upstream-most rib average heat transfer coefficients decreased with the blockage ratio; and 6 thermal performance decreased with increased blockage ratio. While a pitch-to-height ratio of 8.5 and 10 had the highest thermal performance for the smallest rib geometry, thermal performance of high blockage ribs did not change significantly with the pitch-to-height ratio.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2978 ◽  
Author(s):  
Elisabete R. Teixeira ◽  
Gilberto Machado ◽  
Adilson de P. Junior ◽  
Christiane Guarnier ◽  
Jorge Fernandes ◽  
...  

The present research is focused on an experimental investigation to evaluate the mechanical, durability, and thermal performance of compressed earth blocks (CEBs) produced in Portugal. CEBs were analysed in terms of electrical resistivity, ultrasonic pulse velocity, compressive strength, total water absorption, water absorption by capillarity, accelerated erosion test, and thermal transmittance evaluated in a guarded hotbox setup apparatus. Overall, the results showed that compressed earth blocks presented good mechanical and durability properties. Still, they had some issues in terms of porosity due to the particle size distribution of soil used for their production. The compressive strength value obtained was 9 MPa, which is considerably higher than the minimum requirements for compressed earth blocks. Moreover, they presented a heat transfer coefficient of 2.66 W/(m2·K). This heat transfer coefficient means that this type of masonry unit cannot be used in the building envelope without an additional thermal insulation layer but shows that they are suitable to be used in partition walls. Although CEBs have promising characteristics when compared to conventional bricks, results also showed that their proprieties could even be improved if optimisation of the soil mixture is implemented.


Sign in / Sign up

Export Citation Format

Share Document