scholarly journals Dynamic Tooth Loads and Stressing for High Contact Ratio Spur Gears

1978 ◽  
Vol 100 (1) ◽  
pp. 69-76 ◽  
Author(s):  
R. W. Cornell ◽  
W. W. Westervelt

A time history, closed form solution is presented for a dynamic model of spur gear systems for all practical contact ratios. The analysis determines the dynamic response of the gear system and the associated tooth loads and stressing. The dynamic model is based on work done by Richardson and Howland [2, 3], and assumes the two gears act as a rigid inertia and the teeth act as a variable spring of a dynamic system excited by the meshing action of the teeth. Included in the analysis are the effects of the non-linearity of the tooth pair stiffness during mesh, the tooth errors, and the tooth profile modifications. Besides reviewing the features, solution, and program of this analysis, preliminary results from applying the analysis are presented, which show that tooth profile modification, system inertia and damping, and system critical speeds can affect the dynamic gear tooth loads and stressing significantly.

1981 ◽  
Vol 103 (2) ◽  
pp. 447-459 ◽  
Author(s):  
R. W. Cornell

The magnitude and variation of tooth pair compliance with load position affects the dynamics and loading significantly, and the tooth root stressing per load varies significantly with load position. Therefore, the recently developed time history, interactive, closed form solution for the dynamic tooth loads for both low and high contact ratio spur gears [1] was expanded to include improved and simplified methods for calculating the compliance and stress sensitivity for three involute tooth forms as a function of load position. The compliance analysis is based on Weber [2] and O’Donnell [3] but with an improved fillet/foundation compliance analysis. The stress sensitivity analysis is a modified version of the Heywood method [4] but with an improvement in the magnitude and location of the peak stress in the fillet. These improved compliance and stress sensitivity analyses are presented along with their evaluation using test, finite element, and analytic transformation results, which showed good agreement.


Author(s):  
Nihat Yıldırım ◽  
Hakan I˙s¸c¸i ◽  
Abdullah Akpolat

Aerospace applications require special procedures for component design and manufacturing. Spur gears of different designs, because of their simpler geometries, are used in vital units-transmissions of helicopters and alike aerospace vehicles. In this study, performances of various profile designs of previously researched low and high contact ratio spur gears with some realistic design parameters are studied. Effects of the realistic parameters of variable tooth pair stiffness, relief shape, and adjacent pitch error on Transmission Error (TE), tooth loads and root stresses are presented; composition of these parameters determines the efficiency of the gearbox assembly. Detail of minimization of tooth root stress through optimized/proper design of relief is described. More comprehensive comparison of the gear tooth profile design cases is done to be able to guide aerospace transmission designers for practical applications with realistic parameters for each of the design cases. A preference order is done among the design cases, depending on effect of some design parameters on the results such as tooth loads, tooth root stresses, TE curves and peak-to-peak TE values.


Author(s):  
Ravi Datt Yadav ◽  
Anant Kumar Singh ◽  
Kunal Arora

Fine finishing of spur gears reduces the vibrations and noise and upsurges the service life of two mating gears. A new magnetorheological gear profile finishing (MRGPF) process is utilized for the fine finishing of spur gear teeth profile surfaces. In the present study, the development of a theoretical mathematical model for the prediction of change in surface roughness during the MRGPF process is done. The present MRGPF is a controllable process with the magnitude of the magnetic field, therefore, the effect of magnetic flux density (MFD) on the gear tooth profile has been analyzed using an analytical approach. Theoretically calculated MFD is validated experimentally and with the finite element analysis. To understand the finishing process mechanism, the different forces acting on the gear surface has been investigated. For the validation of the present roughness model, three sets of finishing cycle experimentations have been performed on the spur gear profile by the MRGPF process. The surface roughness of the spur gear tooth surface after experimentation was measured using Mitutoyo SJ-400 surftest and is equated with the values of theoretically calculated surface roughness. The results show the close agreement which ranges from −7.69% to 2.85% for the same number of finishing cycles. To study the surface characteristics of the finished spur gear tooth profile surface, scanning electron microscopy is used. The present developed theoretical model for surface roughness during the MRGPF process predicts the finishing performance with cycle time, improvement in the surface quality, and functional application of the gears.


Author(s):  
L. Beji ◽  
M. Pascal ◽  
P. Joli

Abstract In this paper, an architecture of a six degrees of freedom (dof) parallel robot and three limbs is described. The robot is called Space Manipulator (SM). In a first step, the inverse kinematic problem for the robot is solved in closed form solution. Further, we need to inverse only a 3 × 3 passive jacobian matrix to solve the direct kinematic problem. In a second step, the dynamic equations are derived by using the Lagrangian formalism where the coordinates are the passive and active joint coordinates. Based on geometrical properties of the robot, the equations of motion are derived in terms of only 9 coordinates related by 3 kinematic constraints. The computational cost of the obtained dynamic model is reduced by using a minimum set of base inertial parameters.


2013 ◽  
Vol 633 ◽  
pp. 87-102 ◽  
Author(s):  
Ivana Atanasovska ◽  
Radivoje Mitrovic ◽  
Dejan Momcilovic

The gear tooth profile has an immense effect on the main operating parameters of gear pairs (load capacity, working life, efficiency, vibrations, etc). In current engineering research and practice, there is a strong need to develop methods for tooth profile optimization. In this paper a new method for selecting the optimal tooth profile parameters of spur gears is described. This method has been named the Explicit Parametric Method (EPM). The addendum modification coefficient, radius of root curvature, and pressure angle of the basic rack for cylindrical gears, have been identified as the main tooth profile parameters of spur gears. Therefore, the EPM selects the optimal values for these three tooth profile parameters. Special attention has been paid to develop a method of adjustment for the particular working conditions and explicit optimization requirements. The EPM for optimal tooth profile parameters of gears uses contact nonlinear Finite Element Analysis (FEA) for calculation of deformations and stresses of gear pairs, in addition to explicit comparative diagrams for optimal tooth profile parameter selection.


1985 ◽  
Vol 107 (4) ◽  
pp. 529-535 ◽  
Author(s):  
D. C. H. Yang ◽  
Z. S. Sun

We develop a dynamic model for a spur gear system with backlash. This model is circular and is geometrically different from the rectilinear gear model of Azar and Crossley. By taking advantage of involute tooth profile, we are able to take material compliance and energy dissipation into account. Furthermore, the complicated phenomenon of contact tooth pairs alternation between one and two during meshing is also included in the model. This model is believed to be closer to reality than the existing model and hopefully is useful in studying gears in high-speed and intermittent motions.


Author(s):  
William S. Oates ◽  
Christopher S. Lynch

To date, much of the work done on ferroelectric fracture assumes the material is elastically isotropic, yet there can be considerable polarization induced anisotropy. More sophisticated solutions of the fracture problem incorporate anisotropy through the Stroh formalism generalized to the piezoelectric material. This gives equations for the stress singularity, but the characteristic equation involves solving a sixth order polynomial. In general this must be accomplished numerically for each composition. In this work it is shown that a closed form solution can be obtained using orthotropy rescaling. This technique involves rescaling the coordinate system based on certain ratios of the elastic, dielectric, and piezoelectric coefficients. The result is that the governing equations can be reduced to the biharmonic equation and solutions for the isotropic material utilized to obtain solutions for the anisotropic material. This leads to closed form solutions for the stress singularity in terms of ratios of the elastic, dielectric, and piezoelectric coefficients. The results of the two approaches are compared and the contribution of anisotropy to the stress intensity factor discussed.


2008 ◽  
Vol 75 (1) ◽  
Author(s):  
F. G. O’Neill ◽  
R. D. Neilson

A dynamic model of a diamond mesh cod-end subject to harmonic forcing is developed. The partial differential equations governing the displacements of the cod-end and the tension in the twine are first derived and then analyzed using the harmonic balance method by substituting a harmonic series for the dependent variables and the forcing term. A closed-form solution is derived for the case of rigid-body motion, where there is no deformation of the cod-end geometry, along with the conditions for the forcing under which this motion occurs. A pressure loading, which varies linearly over a portion of the cod-end and varies harmonically with time, is then introduced as a first representation of the loading on the cod-end that results from the pressure and acceleration forces on the catch due to surge motion of the towing vessel. The resulting sets of equations for the static and the first and second harmonic terms are solved numerically in a sequential manner, and the results presented for a number of cases. These results show that, due to the nonlinearity of the system, the oscillatory motion of the cod-end is asymmetric, and that the deformation of the net and the amplitude of oscillation increases as the region over which the forcing is applied increases. The model is the basis for a more complete coupled catch/cod-end model.


1985 ◽  
Vol 107 (1) ◽  
pp. 11-16 ◽  
Author(s):  
A. H. Elkholy

A closed-form solution is presented for calculating the load sharing among meshing teeth in high contact ratio gearing (HCRG). The procedure is based upon the assumption that the sum of the tooth deflection, profile modification and spacing error at each of two or three pairs of contacts are all equal. It is also assumed that the sum of the normal loads contributed by each of two or three pairs of contacts is equal to the maximum normal load. Once the individual loads are determined, the tooth fillet stress, contact stress may be determined from the applied load and tooth geometry. An experimental example appears to verify the method.


Sign in / Sign up

Export Citation Format

Share Document