Accurate solution of the Orr–Sommerfeld stability equation

1971 ◽  
Vol 50 (4) ◽  
pp. 689-703 ◽  
Author(s):  
Steven A. Orszag

The Orr-Sommerfeld equation is solved numerically using expansions in Chebyshev polynomials and the QR matrix eigenvalue algorithm. It is shown that results of great accuracy are obtained very economically. The method is applied to the stability of plane Poiseuille flow; it is found that the critical Reynolds number is 5772·22. It is explained why expansions in Chebyshev polynomials are better suited to the solution of hydrodynamic stability problems than expansions in other, seemingly more relevant, sets of orthogonal functions.

2019 ◽  
Vol 14 (1) ◽  
pp. 52-58 ◽  
Author(s):  
A.D. Nizamova ◽  
V.N. Kireev ◽  
S.F. Urmancheev

The flow of a viscous model fluid in a flat channel with a non-uniform temperature field is considered. The problem of the stability of a thermoviscous fluid is solved on the basis of the derived generalized Orr-Sommerfeld equation by the spectral decomposition method in Chebyshev polynomials. The effect of taking into account the linear and exponential dependences of the fluid viscosity on temperature on the spectral characteristics of the hydrodynamic stability equation for an incompressible fluid in a flat channel with given different wall temperatures is investigated. Analytically obtained profiles of the flow rate of a thermovisible fluid. The spectral pictures of the eigenvalues of the generalized Orr-Sommerfeld equation are constructed. It is shown that the structure of the spectra largely depends on the properties of the liquid, which are determined by the viscosity functional dependence index. It has been established that for small values of the thermoviscosity parameter the spectrum compares the spectrum for isothermal fluid flow, however, as it increases, the number of eigenvalues and their density increase, that is, there are more points at which the problem has a nontrivial solution. The stability of the flow of a thermoviscous fluid depends on the presence of an eigenvalue with a positive imaginary part among the entire set of eigenvalues found with fixed Reynolds number and wavenumber parameters. It is shown that with a fixed Reynolds number and a wave number with an increase in the thermoviscosity parameter, the flow becomes unstable. The spectral characteristics determine the structure of the eigenfunctions and the critical parameters of the flow of a thermally viscous fluid. The eigenfunctions constructed in the subsequent works show the behavior of transverse-velocity perturbations, their possible growth or decay over time.


1968 ◽  
Vol 90 (1) ◽  
pp. 109-114 ◽  
Author(s):  
Ahmed R. Wazzan ◽  
T. Okamura ◽  
A. M. O. Smith

The theory of two-dimensional instability of laminar flow of water over solid surfaces is extended to include the effects of heat transfer. The equation that governs the stability of these flows to Tollmien-Schlichting disturbances is the Orr-Sommerfeld equation “modified” to include the effect of viscosity variation with temperature. Numerical solutions to this equation at high Reynolds numbers are obtained using a new method of integration. The method makes use of the Gram-Schmidt orthogonalization technique to obtain linearly independent solutions upon numerically integrating the “modified Orr-Sommerfeld” equation using single precision arithmetic. The method leads to satisfactory answers for Reynolds numbers as high as Rδ* = 100,000. The analysis is applied to the case of flow over both heated and cooled flat plates. The results indicate that heating and cooling of the wall have a large influence on the stability of boundary-layer flow in water. At a free-stream temperature of 60 deg F and wall temperatures of 60, 90, 120, 135, 150, 200, and 300deg F, the critical Reynolds numbers Rδ* are 520, 7200, 15200, 15600, 14800, 10250, and 4600, respectively. At a free-stream temperature of 200F and wall temperature of 60 deg F (cooled case), the critical Reynolds number is 151. Therefore, it is evident that a heated wall has a stabilizing effect, whereas a cooled wall has a destabilizing effect. These stability calculations show that heating increases the critical Reynolds number to a maximum value (Rδ* max = 15,700 at a temperature of TW = 130 deg F) but that further heating decreases the critical Reynolds number. In order to determine the influence of the viscosity derivatives upon the results, the critical Reynolds number for the heated case of T∞ = 40 and TW = 130 deg F was determined using (a) the Orr-Sommerfeld equation and (b) the present governing equation. The resulting critical Reynolds numbers are Rδ* = 140,000 and 16,200, respectively. Therefore, it is concluded that the terms pertaining to the first and second derivatives of the viscosity have a considerable destabilizing influence.


1975 ◽  
Vol 72 (4) ◽  
pp. 731-751 ◽  
Author(s):  
M. Nishioka ◽  
S. Iid A ◽  
Y. Ichikawa

Stability experiments were made on plane Poiseuille flow generated in a long channel of a rectangular cross-section with a width-to-depth ratio of 27·4. By reducing the background turbulence down to a level of 0·05 %, we succeeded in maintaining the flow laminar at Reynolds numbers up to 8000, which is much larger than the critical Reynolds number of the linear theory, about 6000. The downstream development of the sinusoidal disturbance introduced by the vibrating ribbon technique was studied in detail at various frequencies in the range of Reynolds number from 3000 to 7500. This paper presents the experimental results and clarifies the linear stability, the nonlinear subcritical instability and the breakdown leading to the transition.


The stability of plane Poiseuille flow in a channel forced by a wavelike motion on one of the channel walls is investigated. The amplitude Є of this forcing is taken to be small. The most dangerous modes of forcing are identified and it is found in general the critical Reynolds number is changed by O (Є) 2 . However, we identify two particular modes of forcing which give rise to decrements of order Є 2/3 and Є in the critical Reynolds number. Some types of forcing are found to generate sub critical stable finite amplitude perturbations to plane Poiseuille flow. This contrasts with the unforced case where the only stable solution is the zero amplitude solution. The forcing also deforms the unstable subcritical limit cycle solution from its usual circular shape into a more complicated shape. This has an effect on the threshold amplitude ideas suggested by, for example, Meksyn & Stuart (1951). It is found that the phase of disturbances must also be considered when finding the amplitude dependent critical Reynolds numbers.


2019 ◽  
Vol 2 (5) ◽  
pp. 122-129
Author(s):  
Ngoc Anh Trinh ◽  
Dong Vuong Lap Tran

The stability of plane Poiseuille flow depends on eigenvalues and solutions which are generated by solving Orr-Sommerfeld equation with input parameters including real wavenumber and Reynolds number . In the reseach of this paper, the Orr-Sommerfeld equation for the plane Poiseuille flow was solved numerically by improving the Chebyshev collocation method so that the solution of the Orr-Sommerfeld equation could be approximated even and odd polynomial by relying on results of proposition 3.1 that is proved in detail in section 2. The results obtained by this method were more economical than the modified Chebyshev collocation if the comparison could be done in the same accuracy, the same collocation points to find the most unstable eigenvalue. Specifically, the present method needs 49 nodes and only takes 0.0011s to create eigenvalue while the modified Chebyshev collocation also uses 49 nodes but takes 0.0045s to generate eigenvalue with the same accuracy to eight digits after the decimal point in the comparison with , see [4], exact to eleven digits after the decimal point.


2001 ◽  
Author(s):  
Hidesada Kanda

Abstract For plane Poiseuille flow, results of previous investigations were studied, focusing on experimental data on the critical Reynolds number, the entrance length, and the transition length. Consequently, concerning the natural transition, it was confirmed from the experimental data that (i) the transition occurs in the entrance region, (ii) the critical Reynolds number increases as the contraction ratio in the inlet section increases, and (iii) the minimum critical Reynolds number is obtained when the contraction ratio is the smallest or one, and there is no-shaped entrance or straight parallel plates. Its value exists in the neighborhood of 1300, based on the channel height and the average velocity. Although, for Hagen-Poiseuille flow, the minimum critical Reynolds number is approximately 2000, based on the pipe diameter and the average velocity, there seems to be no significant difference in the transition from laminar to turbulent flow between Hagen-Poiseuille flow and plane Poiseuille flow.


When two parallel plates move normal to each other with a slow time-dependent speed, the velocity field developed in the intervening film of fluid is approximately that of plane Poiseuille flow, except that the magnitude of the velocity is dependent on time and on the coordinate parallel to the planes. This fact is intrinsic to Reynolds’ lubrication theory, and can be shown to follow from the Navier-Stokes equations when both the modified Reynolds number ( Re M ) and an aspect ratio ( δ ) are small. The modified Reynolds number is the product of δ and an actual Reynolds number ( Re ), which is based on the gap between the planes and on a characteristic velocity. The occurrence of flow instability and of turbulence in the film depend on Re . Typical values of Re , which are known to be required for the linear instability of plane Poiseuille flow, are of order 6000. This condition can be achieved, even if Re M is of order 1, provided that δ is of order 10 -4 . Such parameter values are typical of lubrication problems. The Orr-Sommerfeld equation governing flow instability is derived in this paper by use of the WKBJ technique, δ being the approximate small parameter to represent the small length-scale of the disturbance oscillations compared with the larger scale of the basic laminar flow. However, the coefficients in the Orr-Sommerfeld equation depend on slow space and time variables. Consequently the eigenrelation, derivable from the Orr-Sommerfeld equation and the associated boundary conditions, constitutes a nonlinear first-order partial differential equation for a phase function. This equation is solved by use of Charpit’s method for certain special forms of the time-dependent gap between the planes, followed by detailed numerical calculations. The relation between time-dependence and flow instability is delineated by the calculated results. In detail the nature of the instability can be described as follows. We consider a disturbance wave at or near a particular station, the initial distribution of amplitude being gaussian in the slow coordinate parallel to the planes. In the context of the Orr-Sommerfeld equation and its eigenrelation, the particular station implies an equivalent Reynolds number, while the initial distribution of the disturbance wave implies an equivalent wavenumber. As time increases, the disturbance wave can be considered to move in the instability diagram of equivalent wavenumber against Reynolds number, in the sense that these parameters are time- and space-dependent for the evolution of the disturbance-wave system. For our detailed calculations we use a quadratic approximation to the eigenrelation, an approximation which is quite accurate. If the initial distribution implies a point within the neutral curve, when the plates are squeezed together the equivalent wavenumber falls while the equivalent Reynolds number rises, and amplification takes place until the lower branch of the neutral curve is nearly crossed. If the plates are pulled apart (dilatation) the equivalent wavenumber rises, while the Reynolds number drops, and amplification takes place until the upper branch of the neutral curve has been just crossed. In the case of dilatation the transition from amplification to damping takes place more quickly than for the case of squeezing, in part due to the geometry of the neutral curve.


Author(s):  
Sharath Jose ◽  
Rama Govindarajan

Small variations introduced in shear flows are known to affect stability dramatically. Rotation of the flow system is one example, where the critical Reynolds number for exponential instabilities falls steeply with a small increase in rotation rate. We ask whether there is a fundamental reason for this sensitivity to rotation. We answer in the affirmative, showing that it is the non-normality of the stability operator in the absence of rotation which triggers this sensitivity. We treat the flow in the presence of rotation as a perturbation on the non-rotating case, and show that the rotating case is a special element of the pseudospectrum of the non-rotating case. Thus, while the non-rotating flow is always modally stable to streamwise-independent perturbations, rotating flows with the smallest rotation are unstable at zero streamwise wavenumber, with the spanwise wavenumbers close to that of disturbances with the highest transient growth in the non-rotating case. The instability critical rotation number scales inversely as the square of the Reynolds number, which we demonstrate is the same as the scaling obeyed by the minimum perturbation amplitude in non-rotating shear flow needed for the pseudospectrum to cross the neutral line. Plane Poiseuille flow and plane Couette flow are shown to behave similarly in this context.


2017 ◽  
Vol 822 ◽  
pp. 813-847 ◽  
Author(s):  
Azan M. Sapardi ◽  
Wisam K. Hussam ◽  
Alban Pothérat ◽  
Gregory J. Sheard

This study seeks to characterise the breakdown of the steady two-dimensional solution in the flow around a 180-degree sharp bend to infinitesimal three-dimensional disturbances using a linear stability analysis. The stability analysis predicts that three-dimensional transition is via a synchronous instability of the steady flows. A highly accurate global linear stability analysis of the flow was conducted with Reynolds number $\mathit{Re}<1150$ and bend opening ratio (ratio of bend width to inlet height) $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 5$. This range of $\mathit{Re}$ and $\unicode[STIX]{x1D6FD}$ captures both steady-state two-dimensional flow solutions and the inception of unsteady two-dimensional flow. For $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 1$, the two-dimensional base flow transitions from steady to unsteady at higher Reynolds number as $\unicode[STIX]{x1D6FD}$ increases. The stability analysis shows that at the onset of instability, the base flow becomes three-dimensionally unstable in two different modes, namely a spanwise oscillating mode for $\unicode[STIX]{x1D6FD}=0.2$ and a spanwise synchronous mode for $\unicode[STIX]{x1D6FD}\geqslant 0.3$. The critical Reynolds number and the spanwise wavelength of perturbations increase as $\unicode[STIX]{x1D6FD}$ increases. For $1<\unicode[STIX]{x1D6FD}\leqslant 2$ both the critical Reynolds number for onset of unsteadiness and the spanwise wavelength decrease as $\unicode[STIX]{x1D6FD}$ increases. Finally, for $2<\unicode[STIX]{x1D6FD}\leqslant 5$, the critical Reynolds number and spanwise wavelength remain almost constant. The linear stability analysis also shows that the base flow becomes unstable to different three-dimensional modes depending on the opening ratio. The modes are found to be localised near the reattachment point of the first recirculation bubble.


1981 ◽  
Vol 48 (1) ◽  
pp. 192-194 ◽  
Author(s):  
S. C. Gupta ◽  
V. K. Garg

It is found that even a 5 percent change in the velocity profile produces a 100 percent change in the critical Reynolds number for the stability of developing flow very close to the entrance of a two-dimensional channel.


Sign in / Sign up

Export Citation Format

Share Document