Effect of a Time-Dependent Stenosis on Flow Through a Tube

1968 ◽  
Vol 90 (2) ◽  
pp. 248-254 ◽  
Author(s):  
D. F. Young

A common occurrence in the arterial system is the narrowing of arteries due to the development of atherosclerotic plaques or other types of abnormal tissue development. As these growths project into the lumen of the artery, the flow is disturbed and there develops a potential coupling between the growth and the blood flow through the artery. A discussion of the various possible consequences of this interaction is given. It is noted that very small growths leading to mild stenotic obstructions, although not altering the gross flow characteristics significantly, may be important in triggering biological mechanisms such as intimal cell proliferation or changes in vessel caliber. An analysis of the effect of an axially symmetric, time-dependent growth into the lumen of a tube of constant cross section through which a Newtonian fluid is steadily flowing is presented. This analysis is based on a simplified model in which the convective acceleration terms in the Navier-Stokes equations are neglected. Effect of growth on pressure distribution and wall shearing stress is given and possible biological implications are discussed.

1993 ◽  
Vol 115 (4) ◽  
pp. 680-686 ◽  
Author(s):  
Reima Iwatsu ◽  
Jae Min Hyun ◽  
Kunio Kuwahara

Numerical studies are made of three-dimensional flow of a viscous fluid in a cubical container. The flow is driven by the top sliding wall, which executes sinusoidal oscillations. Numerical solutions are acquired by solving the time-dependent, three-dimensional incompressible Navier-Stokes equations by employing very fine meshes. Results are presented for wide ranges of two principal physical parameters, i.e., the Reynolds number, Re ≤ 2000 and the frequency parameter of the lid oscillation, ω′ ≤ 10.0. Comprehensive details of the flow structure are analyzed. Attention is focused on the three-dimensionality of the flow field. Extensive numerical flow visualizations have been performed. These yield sequential plots of the main flows as well as the secondary flow patterns. It is found that the previous two-dimensional computational results are adequate in describing the main flow characteristics in the bulk of interior when ω′ is reasonably high. For the cases of high-Re flows, however, the three-dimensional motions exhibit additional complexities especially when ω′ is low. It is asserted that, thanks to the recent development of the supercomputers, calculation of three-dimensional, time-dependent flow problems appears to be feasible at least over limited ranges of Re.


1968 ◽  
Vol 10 (2) ◽  
pp. 133-140 ◽  
Author(s):  
R. D. Mills

Numerical solutions of the Navier-Stokes equations have been obtained in the low range of Reynolds numbers for steady, axially symmetric, viscous, incompressible fluid flow through an orifice in a circular pipe with a fixed orifice/pipe diameter ratio. Streamline patterns and vorticity contours are presented as functions of Reynolds number. The theoretically determined discharge coefficients are in good agreement with experimental results of Johansen (2).


Computation ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 27
Author(s):  
Nattakarn Numpanviwat ◽  
Pearanat Chuchard

The semi-analytical solution for transient electroosmotic flow through elliptic cylindrical microchannels is derived from the Navier-Stokes equations using the Laplace transform. The electroosmotic force expressed by the linearized Poisson-Boltzmann equation is considered the external force in the Navier-Stokes equations. The velocity field solution is obtained in the form of the Mathieu and modified Mathieu functions and it is capable of describing the flow behavior in the system when the boundary condition is either constant or varied. The fluid velocity is calculated numerically using the inverse Laplace transform in order to describe the transient behavior. Moreover, the flow rates and the relative errors on the flow rates are presented to investigate the effect of eccentricity of the elliptic cross-section. The investigation shows that, when the area of the channel cross-sections is fixed, the relative errors are less than 1% if the eccentricity is not greater than 0.5. As a result, an elliptic channel with the eccentricity not greater than 0.5 can be assumed to be circular when the solution is written in the form of trigonometric functions in order to avoid the difficulty in computing the Mathieu and modified Mathieu functions.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


1976 ◽  
Vol 78 (2) ◽  
pp. 355-383 ◽  
Author(s):  
H. Fasel

The stability of incompressible boundary-layer flows on a semi-infinite flat plate and the growth of disturbances in such flows are investigated by numerical integration of the complete Navier–;Stokes equations for laminar two-dimensional flows. Forced time-dependent disturbances are introduced into the flow field and the reaction of the flow to such disturbances is studied by directly solving the Navier–Stokes equations using a finite-difference method. An implicit finitedifference scheme was developed for the calculation of the extremely unsteady flow fields which arose from the forced time-dependent disturbances. The problem of the numerical stability of the method called for special attention in order to avoid possible distortions of the results caused by the interaction of unstable numerical oscillations with physically meaningful perturbations. A demonstration of the suitability of the numerical method for the investigation of stability and the initial growth of disturbances is presented for small periodic perturbations. For this particular case the numerical results can be compared with linear stability theory and experimental measurements. In this paper a number of numerical calculations for small periodic disturbances are discussed in detail. The results are generally in fairly close agreement with linear stability theory or experimental measurements.


1991 ◽  
Vol 227 ◽  
pp. 1-33 ◽  
Author(s):  
Stephen M. Cox

We consider the flow of a viscous incompressible fluid in a parallel-walled channel, driven by steady uniform suction through the porous channel walls. A similarity transformation reduces the Navier-Stokes equations to a single partial differential equation (PDE) for the stream function, with two-point boundary conditions. We discuss the bifurcations of the steady solutions first, and show how a pitchfork bifurcation is unfolded when a symmetry of the problem is broken.Then we describe time-dependent solutions of the governing PDE, which we calculate numerically. We analyse these unsteady solutions when there is a high rate of suction through one wall, and the other wall is impermeable: there is a limit cycle composed of an explosive phase of inviscid growth, and a slow viscous decay. The inviscid phase ‘almost’ has a finite-time singularity. We discuss whether solutions of the governing PDE, which are exact solutions of the Navier-Stokes equations, may develop mathematical singularities in a finite time.When the rates of suction at the two walls are equal so that the problem is symmetrical, there is an abrupt transition to chaos, a ‘homoclinic explosion’, in the time-dependent solutions as the Reynolds number is increased. We unfold this transition by perturbing the symmetry, and compare direct numerical integrations of the governing PDE with a recent theory for ‘Lorenz-like’ dynamical systems. The chaos is found to be very sensitive to symmetry breaking.


Sign in / Sign up

Export Citation Format

Share Document