scholarly journals Transient Pressure-Driven Electroosmotic Flow through Elliptic Cross-Sectional Microchannels with Various Eccentricities

Computation ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 27
Author(s):  
Nattakarn Numpanviwat ◽  
Pearanat Chuchard

The semi-analytical solution for transient electroosmotic flow through elliptic cylindrical microchannels is derived from the Navier-Stokes equations using the Laplace transform. The electroosmotic force expressed by the linearized Poisson-Boltzmann equation is considered the external force in the Navier-Stokes equations. The velocity field solution is obtained in the form of the Mathieu and modified Mathieu functions and it is capable of describing the flow behavior in the system when the boundary condition is either constant or varied. The fluid velocity is calculated numerically using the inverse Laplace transform in order to describe the transient behavior. Moreover, the flow rates and the relative errors on the flow rates are presented to investigate the effect of eccentricity of the elliptic cross-section. The investigation shows that, when the area of the channel cross-sections is fixed, the relative errors are less than 1% if the eccentricity is not greater than 0.5. As a result, an elliptic channel with the eccentricity not greater than 0.5 can be assumed to be circular when the solution is written in the form of trigonometric functions in order to avoid the difficulty in computing the Mathieu and modified Mathieu functions.

1968 ◽  
Vol 90 (2) ◽  
pp. 248-254 ◽  
Author(s):  
D. F. Young

A common occurrence in the arterial system is the narrowing of arteries due to the development of atherosclerotic plaques or other types of abnormal tissue development. As these growths project into the lumen of the artery, the flow is disturbed and there develops a potential coupling between the growth and the blood flow through the artery. A discussion of the various possible consequences of this interaction is given. It is noted that very small growths leading to mild stenotic obstructions, although not altering the gross flow characteristics significantly, may be important in triggering biological mechanisms such as intimal cell proliferation or changes in vessel caliber. An analysis of the effect of an axially symmetric, time-dependent growth into the lumen of a tube of constant cross section through which a Newtonian fluid is steadily flowing is presented. This analysis is based on a simplified model in which the convective acceleration terms in the Navier-Stokes equations are neglected. Effect of growth on pressure distribution and wall shearing stress is given and possible biological implications are discussed.


Author(s):  
P.A. Chando ◽  
S.S. Ray ◽  
A.L. Yarin

The focus of this research is to study fluidic transport through carbon nanotubes. The nanotubes studied were formed by electrospinning Polycaplrolactone (PCL) nanofibers and then using them as channel templates in colyacrylamide blocks which were carbonized. A pressure driven flow is initiated through the nanochannels and the rate of emulsion formation is recorded with a CCD camera. Theoretical calculations are conducted for nanochannels because in many experiments, the nanochannels studied have two-phase flows, which make direct application of Poiseuille law impossible. The model used for the calculations is a slit with two fluid layers in between. In particular, in many experiments, decane-air system is of interest. The calculations are carried out using the Navier-Stokes equations. The results of the model are used to evaluate experimental volumetric flow rates and find the distribution of air and decane in the nanochannels.


Author(s):  
S M Fraser ◽  
Y Zhang

Three-dimensional turbulent flow through the impeller passage of a model mixed-flow pump has been simulated by solving the Navier-Stokes equations with an improved κ-ɛ model. The standard κ-ɛ model was found to be unsatisfactory for solving the off-design impeller flow and a converged solution could not be obtained at 49 per cent design flowrate. After careful analysis, it was decided to modify the standard κ-ɛ model by including the extra rates of strain due to the acceleration of impeller rotation and geometrical curvature and removing the mathematical ill-posedness between the mean flow turbulence modelling and the logarithmic wall function.


2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Akiomi Ushida ◽  
Tomiichi Hasegawa ◽  
Takehiro Hoshina ◽  
Shouta Kudou ◽  
Hiroshige Uchiyama ◽  
...  

Owing to the many potential industrial and biological applications of microfluid mechanics, it has recently become an attractive research topic. However, researchers have mainly concentrated on microchannel flows and studies investigating micro-orifice flows are rare cases. In the present study, the results from experiments conducted on flows through micro-orifices with diameters of 100 μm, 50 μm, and 25 μm are presented. In these experiments, the thrust and diameter of observed outflow jets are measured. The resultant thrust and diameter of the jets for the 100 μm orifice flow agree with the numerical predictions obtained via the Navier–Stokes equations. Conversely, for an orifice with a diameter of 50 μm or less, it is found that the thrust is lower than that predicted and the existence of jet swell becomes apparent. With the estimated elastic stress proportional to squared mean velocity, a change in the elasticity of the water as it flows through a micro-orifice is strongly suggested.


Author(s):  
Lotfi Grine ◽  
Abdel-Hakim Bouzid

In recent years, few experimental and theoretical studies have been conducted to predict gas leak rate through gaskets. However a very limited work is done on liquid leak rates through gaskets. A new method based on a slip flow model to predict liquid flow through nano-porous gaskets is presented. A recent study [1] had shown that the leakage prediction based on the porosity parameter approach was successful in predicting gaseous leaks and an extrapolation of the latter to liquid leaks is the purpose of this study. In the present article, an analytical-computational methodology based on the number and pore size to predict liquid nanoflow in the slip flow regime through gaskets is presented. The formulation is based on the Navier-Stokes equations associated to slip boundary condition at the wall. The mass leak rates through a gasket considered as a porous media under variable experimentally conditions of (fluid media, pressure, and gasket stress) were conducted on a test bench. Gaseous and liquid leaks are measured and comparisons are made with the analytical predictions.


Author(s):  
S. Boedo

This paper provides concise specifications where idealized Poiseuille flow is applicable in representing one-dimensional flow through wide, thin, rough microchannels subjected to prescribed pressures at the channel ends. Starting with the general (compressible) form of the Navier-Stokes equations, new expressions which discuss the effect of body forces on flow through thin channels are first presented, leading to upper and lower bounds on channel reference velocity where idealized Poiseuille flow dominates. These results are combined with previously published studies related to the predicability of flow through stochastically rough surfaces. An arbitrarily chosen microchannel model based loosely on a previously published experimental test setup is used as a sample application.


2016 ◽  
Vol 26 (05) ◽  
pp. 1650086
Author(s):  
Tingting Tang ◽  
Zhiyong Li ◽  
J. M. McDonough ◽  
P. D. Hislop

In this paper, a discrete dynamical system (DDS) is derived from the generalized Navier–Stokes equations for incompressible flow in porous media via a Galerkin procedure. The main difference from the previously studied poor man’s Navier–Stokes equations is the addition of forcing terms accounting for linear and nonlinear drag forces of the medium — Darcy and Forchheimer terms. A detailed numerical investigation focusing on the bifurcation parameters due to these additional terms is provided in the form of regime maps, time series, power spectra, phase portraits and basins of attraction, which indicate system behaviors in agreement with expected physical fluid flow through porous media. As concluded from the previous studies, this DDS can be employed in subgrid-scale models of synthetic-velocity form for large-eddy simulation of turbulent flow through porous media.


2014 ◽  
Vol 761 ◽  
pp. 241-260 ◽  
Author(s):  
G. Daschiel ◽  
V. Krieger ◽  
J. Jovanović ◽  
A. Delgado

AbstractThe development of incompressible turbulent flow through a pipe of wavy cross-section was studied numerically by direct integration of the Navier–Stokes equations. Simulations were performed at Reynolds numbers of $4.5\times 10^{3}$ and $10^{4}$ based on the hydraulic diameter and the bulk velocity. Results for the pressure resistance coefficient ${\it\lambda}$ were found to be in excellent agreement with experimental data of Schiller (Z. Angew. Math. Mech., vol. 3, 1922, pp. 2–13). Of particular interest is the decrease in ${\it\lambda}$ below the level predicted from the Blasius correlation, which fits almost all experimental results for pipes and ducts of complex cross-sectional geometries. Simulation databases were used to evaluate turbulence anisotropy and provide insights into structural changes of turbulence leading to flow relaminarization. Anisotropy-invariant mapping of turbulence confirmed that suppression of turbulence is due to statistical axisymmetry in the turbulent stresses.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Kai Zhang ◽  
Lengjun Jiang ◽  
Zhihan Gao ◽  
Changxiu Zhai ◽  
Weiwei Yan ◽  
...  

Induced charge electroosmotic flow is a new electric driving mode. Based on the Navier–Stokes equations and the Poisson–Nernst–Planck (PNP) ion transport equations, the finite volume method is adopted to calculate the equations and boundary conditions of the induced charge electroosmotic flow. In this paper, the formula of the induced zeta potential of the polarized solid surface is proposed, and a UDF program suitable for the simulation of the induced charge electroosmotic is prepared according to this theory. At the same time, on the basis of this theory, a cross micropump driven by induced charge electroosmotic flow is designed, and the voltage, electric potential, charge density, and streamline of the induced electroosmotic micropump are obtained. Studies have shown that when the cross-shaped micropump is energized, in the center of the induction electrode near the formation of a dense electric double layer, there exist four symmetrical vortices at the four corners, and they push the solution towards both outlets; it can be found that the average velocity of the solution in the cross-flow microfluidic pump is nonlinear with the applied electric field, which maybe helpful for the practical application of induced electroosmotic flow in the field of micropump.


2021 ◽  
Author(s):  
Tahmina Akhter ◽  
Katrin Rohlf

The flow of a compressible fluid with slip through a cylinder with an asymmetric local constriction has been considered both numerically, as well as analytically. For the numerical work, a particle-based method whose dynamics is governed by the multiparticle collision (MPC) rule has been used together with a generalized boundary condition that allows for slip at the wall. Since it is well known that an MPC system corresponds to an ideal gas and behaves like a compressible, viscous flow on average, an approximate analytical solution has been derived from the compressible Navier–Stokes equations of motion coupled to an ideal gas equation of state using the Karman–Pohlhausen method. The constriction is assumed to have a polynomial form, and the location of maximum constriction is varied throughout the constricted portion of the cylinder. Results for centerline densities and centerline velocities have been compared for various Reynolds numbers, Mach numbers, wall slip values and flow geometries.


Sign in / Sign up

Export Citation Format

Share Document