On the Use of Clearance in Viscous Dampers to Limit High Frequency Force Transmission

1961 ◽  
Vol 83 (1) ◽  
pp. 50-52 ◽  
Author(s):  
M. E. Gurtin

The steady-state vibration of a single degree of freedom system with clearance in the viscous damper is investigated. The results show that the clearance damper combines the low resonant force transmission feature of the viscous damped system and the characteristic of low force transmission at high frequencies of the undamped system.

Author(s):  
S. A. Nayfeh ◽  
A. H. Nayfeh

Abstract We study the response of a single-degree-of-freedom system with cubic nonlinearities to an amplitude-modulated excitation whose carrier frequency is much higher than the natural frequency of the system. The only restriction on the amplitude modulation is that it contain frequencies much lower than the carrier frequency of the excitation. We apply the theory to different types of amplitude modulation and find that resonant excitation of the system may occur under some conditions.


2021 ◽  
Vol 263 (4) ◽  
pp. 2172-2183
Author(s):  
Jerry Lilly

The natural frequency, dynamic stiffness, and insertion loss of commercially available neoprene pad vibration isolators have been measured in a simple, single degree of freedom system over a wide range of pad loadings out to a maximum frequency of 10 kHz. The results reveal that dynamic stiffness can vary significantly with pad loading as well as the durometer of the material. It will also be shown that insertion loss follows the theoretical single degree of freedom curve only out to a frequency that is about 5 to 10 times the natural frequency, depending upon the pad durometer rating. Above that frequency wave resonances in the material cause the insertion loss to deteriorate significantly out to a frequency near 1 kHz, above which the insertion loss maintains a relatively constant value, again depending upon the pad durometer rating. In some instances the insertion loss values can approach 0 dB or even become negative at specific frequencies in the frequency region that is 10 to 20 times the natural frequency of the system.


2010 ◽  
Vol 65 (5) ◽  
pp. 357-368 ◽  
Author(s):  
Atef F. El-Bassiouny ◽  
Salah El-Kholy

The primary and subharmonic resonances of a nonlinear single-degree-of-freedom system under feedback control with a time delay are studied by means of an asymptotic perturbation technique. Both external (forcing) and parametric excitations are included. By means of the averaging method and multiple scales method, two slow-flow equations for the amplitude and phase of the primary and subharmonic resonances and all other parameters are obtained. The steady state (fixed points) corresponding to a periodic motion of the starting system is investigated and frequency-response curves are shown. The stability of the fixed points is examined using the variational method. The effect of the feedback gains, the time-delay, the coefficient of cubic term, and the coefficients of external and parametric excitations on the steady-state responses are investigated and the results are presented as plots of the steady-state response amplitude versus the detuning parameter. The results obtained by two methods are in excellent agreement


1978 ◽  
Vol 100 (1) ◽  
pp. 193-198 ◽  
Author(s):  
R. K. Miller

A physical model for hardening hysteresis is presented. An approximate analytical technique is used to determine the steady-state response of a single-degree-of-freedom system and a multi-degree-of-freedom system incorporating this model. Certain critical model parameters which determine the general nature of the responses are identified.


1999 ◽  
Vol 26 (1) ◽  
pp. 55-71 ◽  
Author(s):  
Yaomin Fu ◽  
Sheldon Cherry

This paper describes the development of a proposed seismic design procedure for friction-damped steel structures, which employs the lateral force provisions used in many modern building codes. Closed-form expressions are first derived that relate the normalized response of a single degree of freedom friction-damped system with the system parameters, such as bracing stiffness ratio, damper slip ratio, and frame member ductility. A parametric analysis is then used to reveal that the seismic displacement of a friction-damped frame can be controlled by combining the frame stiffness with the bracing stiffness of the friction damper component, while the seismic force can be controlled by the damper slip force. A force modification factor (equivalent to the code R-factor) and displacement estimate for a friction-damped system are next determined. The single degree of freedom results are subsequently used to develop expressions for dealing with the multi degree of freedom situation, which permits the seismic lateral force design procedure adopted by many current building codes to be applied to friction-damped systems. The proposed procedure allows the frame response to be controlled so that the displacement can be limited to small magnitudes and the overall structural shape to an essentially straight-line deformation. Design examples illustrate that friction-damped frame systems are economical and offer a better overall response performance than that provided by conventional systems under the design earthquake.Key words: passive energy dissipation system, friction damper, steel frame, design procedure, static analysis.


This chapter concerns the study of forced vibration of a single degree of freedom system, treating undamped and damped system under harmonic, periodic, and arbitrary loading with different cases and examples. Passing by all components of the general solution of an undamped forced system, which are a transient solution, depends only on initial conditions, transient solution due to the load at the end the stationary solution. In this chapter, a study of the dynamic influence factor depends on the ration between load frequency and structure one is presented.


2005 ◽  
Author(s):  
Michael A. Michaux ◽  
Aldo A. Ferri ◽  
Kenneth A. Cunefare

High-frequency dither forces are often used to reduce unwanted vibration in frictional systems. This paper examines how the effectiveness of these dither-cancellation techniques is influenced by the type of periodic signal employed. The paper uses the method of averaging as well as numerical integration to study a single-degree-of-freedom (SDOF) system consisting of a mass in frictional contact with a translating surface. Recently, it was found that sinusoidal dither forces had the ability to stabilize or destabilize such a system, depending on the system and frictional characteristics as well as the amplitude and frequency of the dither signal [1]. This paper extends this analysis to general, periodic dither forces. In particular, the system response for sinusoidal dither waveforms is compared to that of triangular dither waveforms and square dither waveforms. It is found that, for a given amplitude and frequency of the dither signal, square waveforms are much more effective in canceling friction-induced oscillations than sinusoidal dither; likewise, sinusoidal waveforms are more effective than triangular waveforms for a given amplitude and frequency. A criterion is developed that relates the effectiveness of the waveform to the properties of the integral of the dither signal.


Sign in / Sign up

Export Citation Format

Share Document