An Integrated System for the Aerodynamic Design of Compression Systems—Part I: Development

2010 ◽  
Vol 133 (1) ◽  
Author(s):  
Tiziano Ghisu ◽  
Geoffrey T. Parks ◽  
Jerome P. Jarrett ◽  
P. John Clarkson

The design of gas turbine engines is a complex problem. This complexity has led to the adoption of a modular design approach, in which a conceptual design phase fixes the values for some global parameters and dimensions in order to facilitate the subdivision of the overall task into a number of simpler subproblems. This approach, while making a complex problem more tractable, necessarily has to rely on designer experience and simple evaluations to specify these process-intrinsic constraints at a point in the design process where very little knowledge about the final design exists. Later phases of the design process, using higher-fidelity tools but acting on a limited region of the design space, can only refine an already established design. While substantial improvements in performance have been possible with the current approach, further gains are becoming increasingly hard to achieve. A gas turbine is a complex multidisciplinary system: a more integrated design approach can facilitate a better exploitation of the trade-offs between different modules and disciplines, postponing the setting of these critical interface parameters (such as flow areas, radii, etc.) to a point where more information exists, reducing their impact on the final design. In the resulting large, possibly multimodal, highly constrained design space, and with a large number of objectives to be considered simultaneously, finding an optimal solution by simple trial-and-error can prove extremely difficult. A more intelligent search approach, in which a numerical optimizer takes the place of the human designer in seeking optimal designs, can enable the design space to be explored significantly more effectively, while also yielding a substantial reduction in development times thanks to the automation of the design process. This paper describes the development of a system for the integrated design and optimization of gas turbine engines, linking a metaheuristic optimizer to a geometry modeler and to evaluation tools with different levels of fidelity. In recognition of the substantial increase in design space size required by the integrated approach, an improved parameterization based on the concept of principal components’ analysis was implemented, allowing a rotation of the design space along its most significant directions and a reduction in its dimensionality, proving essential for a faster and more effective exploration of the design space.

2010 ◽  
Vol 133 (1) ◽  
Author(s):  
Tiziano Ghisu ◽  
Geoffrey T. Parks ◽  
Jerome P. Jarrett ◽  
P. John Clarkson

The complexity of modern gas turbine engines has led to the adoption of a modular design approach, in which a conceptual design phase fixes the values for a number of parameters and dimensions in order to facilitate the subdivision of the overall task into a number of simpler design problems. While making the overall problem more tractable, the introduction of these process-intrinsic constraints (such as flow areas and radii between adjacent stages) at a very early phase of the design process can limit the level of performance achievable, neglecting important regions of the design space and concealing important trade-offs between different modules or disciplines. While this approach has worked satisfactorily in the past, the continuous increase in components’ efficiencies and performance makes further advances more difficult to achieve. Part I of this paper described the development of a system for the integrated design optimization of gas turbine engines: postponing the setting of the interface constraints to a point where more information is available facilitates better exploration of the available design space and better exploitation of the trade-offs between different disciplines and modules. In this second part of the paper, the proposed approach is applied to several test cases from the design of a three-spool gas turbine engine core compression system, demonstrating the risks associated with a modular design approach and the consistent gains achievable through the proposed integrated optimization approach.


Author(s):  
Anton Salnikov ◽  
Maxim Danilov

Abstract One of the most important units of small-size gas-turbine engines (GTE) is a turbine bladed disk, since it determines the total engine efficiency. Designing a turbine disks is a complex challenge due to the high loads and a large number of structural and technological constraints, as well as a variety of requirements to the bladed disks for small-size GTEs (higher efficiency, lower mass and adequate strength characteristics, etc.). Diverse requirements to the turbine bladed disks mean that modifying the structure in order to improve some characteristics will degrade other characteristics. A standard solution to this problem is to use the iterative approach, which reduces the design process to a consecutive iteration of setting and solving design problems concerning the bladed disk elements (blade and disk) separately for different aspects. The main drawback of this approach is its tremendous labor intensity and inferior quality of design, as this procedure does not consider the design object as a single entity. This paper proposes an approach to the turbine bladed disks design based on the use of a single multidisciplinary parametrized 3D model that contains several specialized submodels. These submodels define the essential computational regions, as well as the characteristics of the physical processes and phenomena in the object under study. The model also enables integration and interaction of the submodels in a single computational region. The single multidisciplinary model is modified and analyzed automatically, so the design problem is transformed into a multi-criteria optimization problem where the weight, gas dynamic and strength characteristics are used as criteria or constraints, and they are improved by varying the geometric parameters of the blade and disk. Each submodel simulates and analyzes the essential characteristics at the level comparable to the standard engineering calculations. Therefore, the designs obtained as a result of optimization do not need significant improvements, which facilitates and enhances the design process. The development of an integrated model is time consuming, but since the design and operation of bladed disks are similar, the created parametrized multidisciplinary 3D model can be used in the design of other similar disks after minor alternations taking into account the specifics of the new task.


Author(s):  
W. Tabakoff

In operating gas turbine engines in dusty environments, severe erosion of compressor and turbine components results. This erosion adversely effects engine performance. Predicting erosion in the rotating machine of gas turbine is a complex problem. This paper presents test data from the high temperature material erosion facility at the University of Cincinnati. Data was obtained between a target temperature of ambient and 649°C (1200°F) for AM355, Rene 41 and L605 cobalt. In addition, particle velocity and impingement angle were varied.


1997 ◽  
Vol 28 (7-8) ◽  
pp. 536-542
Author(s):  
A. A. Khalatov ◽  
I. S. Varganov

1988 ◽  
Author(s):  
James C. Birdsall ◽  
William J. Davies ◽  
Richard Dixon ◽  
Matthew J. Ivary ◽  
Gary A. Wigell

2020 ◽  
pp. 22-29
Author(s):  
A. Bogoyavlenskiy ◽  
A. Bokov

The article contains the results of the metrological examination and research of the accuracy indicators of a method for diagnosing aircraft gas turbine engines of the D30KU/KP family using an ultra-high-frequency plasma complex. The results of metrological examination of a complete set of regulatory documents related to the diagnostic methodology, and an analysis of the state of metrological support are provided as well. During the metrological examination, the traceability of a measuring instrument (diagnostics) – an ultrahigh-frequency plasma complex – is evaluated based on the scintillation analyzer SAM-DT-01–2. To achieve that, local verification schemes from the state primary standards of the corresponding types of measurements were built. The implementation of measures to eliminate inconsistencies identified during metrological examination allows to reduce to an acceptable level the metrological risks of adverse situations when carrying out aviation activities in industry and air transportation. In addition, the probability of occurrence of errors of the first and second kind in the technological processes of tribodiagnostics of aviation gas turbine engines is reduced when implementing a method that has passed metrological examination in real practice. At the same time, the error in determining ratings and wear indicators provides acceptable accuracy indicators and sufficient reliability in assessing the technical condition of friction units of the D-30KP/KP2/KU/KU-154 aircraft engines.


Author(s):  
O. B. Silchenko ◽  
M. V. Siluyanova ◽  
V. Е. Nizovtsev ◽  
D. A. Klimov ◽  
A. A. Kornilov

The paper gives a brief review of properties and applications of developed extra-hard nanostructured composite materials and coatings based on them. The presentresearch suggestsaerospace applications of nanostructured composite materials based on carbides, carbonitrides and diboridesof transition and refractory metals. To improve the technical and economic performance of gas turbine engines, it is advisable to use new composite structural materials whose basic physicomechanical properties are several times superior to traditional ones. The greatest progress in developing new composites should be expected in the area of materials created on the basis of polymer, metal, intermetallic and ceramic matrices. Currently components and assemblies of gas turbine engines and multiple lighting power units with long operation life and durability will vigorously develop. Next-generation composites are studied in all developed countries, primarily in the United States and Japan.


Sign in / Sign up

Export Citation Format

Share Document