Design of a Three-Axis Articulated Tool Head With Parallel Kinematics Achieving Desired Motion/Force Transmission Characteristics

Author(s):  
Xin-Jun Liu ◽  
Li-Ping Wang ◽  
Fugui Xie ◽  
Ilian A. Bonev

This paper addresses the design issue of a three-axis tool head with three-PRS parallel kinematics (P, R, and S standing for prismatic, revolute, and spherical joint, respectively) by considering their orientation capability and motion/force transmission. The content presented here is actually an improvement on the dimensional optimization of articulated tool heads with parallel kinematics, with emphasis on the three-PRS design to solve the problem of orientational capability. An index that can evaluate the effectiveness of the motion/force transmission is introduced. The orientation capability with which the mechanism has high motion/force transmission capability is then defined. The procedure searching the link lengths with which the mechanism has a high orientation capability and good effectiveness of motion/force transmission is finally presented.

Author(s):  
Xin-Jun Liu ◽  
Ilian A. Bonev

Because of the increasing demand in industry for A/B-axis tool heads, particularly in thin wall machining applications for structural aluminium aerospace components, the three-degree-of-freedom articulated tool head with parallel kinematics has become very popular. This paper addresses the dimensional optimization of two types of tool head with 3-P̱VPHS and 3-P̱VRS parallel kinematics (P, R, and S standing for prismatic, revolute, and spherical joint, respectively; the subscripts V and H indicating that the direction of the P joint is vertical or horizontal, and the joint symbol with underline means the joint is active) by considering their orientation capability and positioning accuracy. We first investigate the tilt angle of the spherical joint, the orientation capability, and the error of one point from the mobile platform caused by input errors. Optimization of the 3-P̱VPHS tool head is easy. For the 3-P̱VRS tool head, a design space is developed to illustrate how the orientation capability and error index are related to the link lengths. An optimization process is accordingly presented. Using the optimization method introduced here, it is not difficult to find all the possible optimal solutions.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Feibo Wang ◽  
Qiaohong Chen ◽  
Qinchuan Li

This paper investigates dimensional optimization of a 2-UPR-RPU parallel manipulator (where U is a universal joint, P a prismatic pair, and R a revolute pair). First, the kinematics and screws of the mechanism are analyzed. Then, three indices developed from motion/force transmission are proposed to evaluate the performance of the 2-UPR-RPU parallel manipulator. Based on the performance atlases obtained, a set of optimal parameters are selected from the optimum region within the parameter design space. Finally, the optimized parameters are determined for practical applications.


1993 ◽  
Vol 115 (4) ◽  
pp. 884-891 ◽  
Author(s):  
Yeong-Jeong Ou ◽  
Lung-Wen Tsai

This paper presents a methodology for kinematic synthesis of tendon-driven manipulators with isotropic transmission characteristics. The force transmission characteristics, from the end-effector space to the actuator space, has been investigated. It is shown that tendon forces required to act against externally applied forces are functions of the structure matrix, its null vector, and the manipulator Jacobian matrix. Design equations for synthesizing a manipulator to possess isotropic transmission characteristics are derived. It is shown that manipulators which possess isotropic transmission characteristics have much better force distribution among their tendons.


2020 ◽  
Vol 21 (5) ◽  
pp. 1121-1127 ◽  
Author(s):  
Kongshu Deng ◽  
Lu Zeng ◽  
Yicheng Ding ◽  
Zhurong Yin

2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Moses Frank Oduori ◽  
David Masinde Munyasi ◽  
Stephen Mwenje Mutuli

This paper sets out to perform a static force analysis of the single toggle jaw crusher mechanism and to obtain the force transmission characteristics of the mechanism. In order to obtain force transmission metrics that are characteristic of the structure of the mechanism, such influences as friction, dead weight, and inertia are considered to be extraneous and neglected. Equations are obtained by considering the balance of forces at the moving joints and appropriately relating these to the input torque and the output torque. A mechanical advantage, the corresponding transmitted torque, and the variations thereof, during the cycle of motion of the mechanism, are obtained. The mechanical advantage that characterizes the mechanism is calculated as the mean value over the active crushing stroke of the mechanism. The force transmission characteristics can be used as criteria for the comparison of different jaw crusher mechanism designs in order to select the most suitable design for a given application. The equations obtained can also be used in estimating the forces sustained by the components of the mechanism.


1993 ◽  
Vol 5 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Haruhisa Kawasaki ◽  
◽  
Takahiro Hayashi

This paper presents a new force feedback glove for manipulation of virtual objects. The glove is comprised of wire, link, servo motor, force sensor, and joint angle sensor of fingers. These devices are mounted to the back of glove. The object grasping sense is generated by the force feedback control of the servo motor. We show the force transmission characteristics of the glove and the experimental results of recognition of the difference in rigidity of object.


1991 ◽  
Vol 28 (6) ◽  
pp. 881-895 ◽  
Author(s):  
T. T. Wong ◽  
N. R. Morgenstern ◽  
D. C. Segoz

A state of the art survey of ice rubble mechanics is first presented. This survey covers ice rubble morphology, laboratory testing of ice rubble, the study of the load transmission capability of existing rubble fields, and field measurements in ice rubble surrounding offshore structures. Then, the implementation of a new plasticity model for normally consolidated broken ice into an existing finite element stress analysis code is described. The resulting program is validated using triaxial test data. Using this model, a two-dimensional parametric study on ice force transmission through a grounded ice rubble field is performed. The study shows that, in addition to the mechanical properties of ice rubble, the island or berm geometry may significantly affect the ice load. Key words: constitutive model, finite element analysis, ice load, ice rubble, offshore structure, plasticity.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 177804-177812
Author(s):  
Kongshu Deng ◽  
Yicheng Ding ◽  
Lu Zeng ◽  
Zhurong Yin

Author(s):  
Yeong-Jeong Ou ◽  
Lung-Wen Tsai

Abstract This paper deals with the synthesis of the mechanical power transmission structure in tendon-driven manipulators. Based on the analysis of static force transmission from the actuator space to the end-effector space, a general theory is developed for the synthesis of tendon-driven manipulators with isotropic transmission characteristics. It is shown that an n-dof (degree of freedom) manipulator can possess these characteristics if it is made up of n+1 or 2n tendons and if its link lengths and pulley sizes are designed according to two equations of constraint. Two examples are used to demonstrate the theory. It is also shown that manipulators with an isotropic transmission structure do have more uniform force distribution among their tendons.


Sign in / Sign up

Export Citation Format

Share Document