Dynamic Responses of Pile Groups Embedded in a Layered Poroelastic Half-Space to Harmonic Axial Loads

2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Bin Xu ◽  
Jian-Fei Lu ◽  
Jian-Hua Wang

The dynamic responses of a pile group embedded in a layered poroelastic half-space subjected to axial harmonic loads is investigated in this study. Based on Biot’s theory, the frequency domain fundamental solution for a vertical circular patch load applied in the layered poroelastic half-space is derived via the transmission and reflection matrix (TRM) method. Utilizing Muki’s method, the second kind of Fredholm integral equations describing the dynamic interaction between the layered half-space and the pile group is constructed. The proposed methodology was validated by comparing the results of this paper with a known result. Numerical results show that in a two-layered half-space, for the closely populated pile group with a rigid cap, the upper softer layer thickness has different influences on the central pile and the corner piles, while for the sparse pile group, it has almost the same influence on all the piles. For a three-layer half-space, the presence of a stiffer middle layer in the layered half-space will enhance the impedance of the pile group significantly, while a softer middle layer will reduce the impedance of the pile group.

2012 ◽  
Vol 204-208 ◽  
pp. 1170-1173
Author(s):  
Chun Bo Cheng ◽  
Man Qing Xu ◽  
Bin Xu

The dynamic response of a pile group embedded in a layered poroelastic half space subjected to axial harmonic loads is investigated in this study. Based on Biot's theory and utilizing Muki's method, the second kind of Fredholm integral equations describing the dynamic interaction between the layered half space and the pile group is constructed. Numerical results show that in a two-layered half space, for the closely populated pile group with a rigid cap, the upper softer layer thickness has considerably different influence on the center pile and the corner piles, while for sparsely populated pile group, it has almost the same influence on all the piles.


2013 ◽  
Vol 405-408 ◽  
pp. 790-794
Author(s):  
Xue Jia Chen ◽  
Man Qing Xu

By using Mukis method, the dynamic interaction between the pile group and layered poroelastic half space subjected to axial harmonic loads is investigated in this study. By using Mukis method, the second kind of Fredholm integral equations describing the dynamic interaction between the layered half space and the pile group is constructed. Numerical solution of the integral equation yields the axial force, the displacement of the pile as well as the response of the layered poroelastic half space. Results of this paper are compared with known results, which shows that our solutions is in a good agreement with the known result. The numerical results of this study also demonstrate that the soil inhomogeneity has a significant influence on the response of pile group.


Author(s):  
Jian-Fei Lu ◽  
Bin Xu ◽  
Jian-Hua Wang

The isolation of the vibration due to a harmonic vertical load using pile rows embedded in a layered poroelastic half-space is investigated in this study. Based on Biot’s theory, the frequency domain fundamental solution for a vertical circular patch load applied in a layered poroelastic half-space is derived via the transmission and reflection matrices (TRM) method. Utilizing Muki and Sternberg’s method, the second kind of Fredholm integral equations describing the dynamic interaction between the pile rows and the layered poroelastic half-space subjected to a harmonic vertical load is constructed. The isolation effect of piles rows for the vibration due to the harmonic vertical load is investigated via numerical solution of the integral equations. Numerical results of this study show that a stiffer upper layer overlying a softer bottom half-space will worsen the vibration isolation effect of pile rows and vice versa. Also, pile rows with large length are preferable for a better vibration isolation effect.


2020 ◽  
Vol 20 (04) ◽  
pp. 2050050
Author(s):  
Lubao Luan ◽  
Xin Deng ◽  
Weiting Deng ◽  
Chenglong Wang ◽  
Xuanming Ding

An analytical solution is presented for evaluating the dynamic responses of pile groups subjected to vertical harmonic loads. The solution allows us to consider the effects of pile geometry on the pile head impedance of the vertically loaded pile groups by the use of a new dynamic interaction factor. To this end, the stress distributions of the soil surrounding the vertically vibrating pile is first determined for calculating the pile–pile interaction factor, instead of the classical interaction factor based on two-pile displacements in past studies. Accordingly, the impedances of the pile group are derived using the proposed pile–pile interaction factor and the superposition principle. Some selected examples are presented to demonstrate the proposed refined technique for evaluating the dynamic characteristics of the pile group.


2012 ◽  
Vol 49 (9) ◽  
pp. 1074-1087 ◽  
Author(s):  
Zheming Li ◽  
Malcolm D. Bolton ◽  
Stuart K. Haigh

Piled foundations are often subjected to cyclic axial loads. This is particularly true for the piles of offshore structures, which are subjected to rocking motions caused by wind or wave actions, and for those of transport structures, which are subjected to traffic loads. As a result of these cyclic loads, excessive differential or absolute settlements may be induced during the piles’ service life. In the research presented here, centrifuge modelling of single piles and pile groups was conducted to investigate the influence of cyclic axial loads on the performance of piled foundations. The influence of installation method was investigated and it was found that the cyclic response of a pile whose jacked installation was modelled correctly is much stiffer than that of a bored pile. During displacement-controlled axial load cycling, the pile head stiffness reduces with an increasing number of cycles, but at a decreasing rate; during force-controlled axial load cycling, more permanent settlement is accumulated for a bored pile than for a jacked pile. The performance of individual piles in a pile group subjected to cyclic axial loads is similar to that of a single pile, without any evident group effect. Finally, a numerical analysis of axially loaded piles was validated by centrifuge test results. Cyclic stiffness of soil at the base of pre-jacked piles increases dramatically, while at base of jacked piles it remains almost constant.


1978 ◽  
Vol 45 (2) ◽  
pp. 379-384 ◽  
Author(s):  
Y. J. Lin

Dynamic responses of circular thin plates resting on viscoelastic half space subject to harmonic vertical and rocking excitations are studied. The analysis is based on the assumption that the contact between the plate and the surface of the half space is frictionless. This dynamic mixed boundary-value problem leads to sets of dual integral equations which are reduced to Fredholm integral equations of the second kind and solved by numerical procedures. The numerical results show that the rocking impedance function is independent of the plate flexibility, but the vertical excitation is not.


2010 ◽  
Vol 4 (1) ◽  
pp. 38-56 ◽  
Author(s):  
Bin Xu ◽  
Jian-Fei Lu ◽  
Jian-Hua Wang

The isolation of the vibration due to a harmonic vertical load using pile rows embedded in a saturated poroelastic half-space is investigated in this study. Using the fundamental solution for a circular patch load and Muki’s method, the second kind of Fredholm integral equations describing the dynamical interaction between the pile rows and the saturated poroelastic half-space are obtained. Numerical solution of the integral equations yields the dynamic response of the pile-half-space system. The vibration isolation effect of the pile rows is investigated via the proposed semi-analytical model. Numerical results indicate that stiffer piles have better isolation vibration effect than flexible piles. Moreover, the pile length and the spacing between neighboring piles in one pile row have significant influence on the isolation vibration effect of pile rows, while the influence of the spacing between neighboring pile rows is relatively smaller.


Sign in / Sign up

Export Citation Format

Share Document