Bifurcated Forced Convective Heat Transfer of Supercritical CO2 Flow in Plane Symmetric Sudden Expansion Duct

2010 ◽  
Vol 133 (2) ◽  
Author(s):  
Bi-Li Deng ◽  
Xin-Rong Zhang ◽  
Hiroshi Yamaguchi

This study presents a computational investigation of forced convection of supercritical CO2 flow in plane symmetric sudden expansion duct at an expansion ratio of 2 in flow asymmetric regime. Computations were conducted at various Reynolds numbers in flow asymmetric regime and low wall heat fluxes below 500 W/m2 to examine the Reynolds number and thermal effects on the flow and heat transfer of the bifurcated flow. General flow features and temperature distributions are presented. The transitional Reynolds numbers above, which a third recirculation region will appear at different wall heat flux are presented, and thus thermal effects on the flow stability are discussed. Reynolds number and thermal effects on distributions of wall skin friction, pressure coefficient, and Nusselt number are presented and discussed.

2015 ◽  
Vol 813-814 ◽  
pp. 652-657
Author(s):  
Seranthian Ramanathan ◽  
M.R. Thansekhar ◽  
P. Rajesh Kanna ◽  
S. Shankara Narayanan

A 3-Dimensional fluid flow over the sudden expansion region of a horizontal duct for various Reynolds numbers have been studied by using the CFD Software package ANSYS Workbench Fluent v 13.0. The expansion ratio and aspect ratio for the sudden expansion are taken as 2.5 and 4 respectively. This work deals with the finding of critical Reynolds number for a fluid and also the length of re-attachments on stepped walls at various Reynolds numbers for the same fluid. The simulation is carried out in sudden expansion for Reynolds number ranging from 200 to 4000. The variations of local Nusselt number along the stepped walls of the sudden expansion are presented with the heat flux of 35 W/m2 on the stepped walls. Also, the plots of pressure coefficient (Cp) along the stepped walls for different Reynolds numbers are presented in this work.


Author(s):  
J. H. Nie ◽  
B. F. Armaly

Simulations of three-dimensional flow and heat transfer in laminar incompressible forced convection in plane symmetric sudden expansion (backward-facing step in rectangular duct) are presented for different Reynolds numbers. The duct’s downstream (H) and upstream (h) heights are 0.04m and 0.02m, respectively, thus providing a step height (S) of 0.01m and an expansion ratio of 2. The duct’s width (W) is 0.08m, thus resulting in an aspect ratio of 4 before and 2 after the expansion, respectively. The incoming flow is considered to be isothermal, hydro-dynamically steady and fully developed. Uniform and constant heat flux is specified on the stepped walls, while the other walls are treated as adiabatic surfaces. The flow appears to be symmetric for the low Reynolds number range that is considered in this study (Re=150). A “jet-like” flow develops near the sidewall and its impingement on the stepped wall creates a swirling flow inside the primary recirculation region adjacent to the stepped wall, and that is responsible for creating a maximum in the Nusselt number distribution. The results reveal that the location where the streamwise component of wall shear stress is zero on the stepped wall does not coincide with the location of the outer edge of the primary recirculation region, especially in the region near the sidewall. Neither one of these boundary lines represents the reattachment region of the separated flow in the region adjacent to the sidewall. The maximum Nusselt number on the stepped wall is located inside the primary recirculation region and is not identical to the “jet-like” flow impingement point. The maximum friction coefficient on the stepped wall is located inside the primary recirculation region, and it is at the center of the duct for the Reynolds number range considered in this study. The minimum friction coefficient on the stepped wall is located at the impingement of the “jet-like” flow.


1974 ◽  
Vol 64 (1) ◽  
pp. 111-128 ◽  
Author(s):  
F. Durst ◽  
A. Melling ◽  
J. H. Whitelaw

Flow visualization and laser-anemometry measurements are reported in the flow downstream of a plane 3: 1 symmetric expansion in a duct with an aspect ratio of 9·2: 1 downstream of the expansion. The flow was found to be markedly dependent on Reynolds number, and strongly three-dimensional even well away from the channel corners except at the lowest measurable velocities. The measurements at a Reynolds number of 56 indicated that the separation regions behind each step were of equal length. Symmetric velocity profiles existed from the expansion to a fully developed, parabolic profile far downstream, although there were substantial three-dimensional effects in the vicinity of the separation regions. The velocity profiles were in good agreement with those obtained by solving the two-dimensional momentum equation. At a Reynolds number of 114, the two separation regions were of different lengths, leading to asymmetric velocity profiles; three dimensional effects were much more pronounced. At a Reynolds number of 252, a third separation zone was found on one wall, downstream of the smaller of the two separation zones adjacent to the steps. As at the lower Reynolds numbers, the flow was very stable. At higher Reynolds numbers the flow became less stable and periodicity became increasingly important in the main stream; this was accompanied by a highly disturbed fluid motion in the separation zones, as the flow tended towards turbulence.


Author(s):  
Bi-Li Deng ◽  
Xin-Rong Zhang

Forced convection of two-dimensional supercritical CO2 flow in plane symmetric sudden expansion duct is investigated numerically in this paper. Simulations were conducted under three wall boundary conditions, i.e., heating, cooling and isothermal, at low Reynolds numbers. Critical Reynolds numbers above which flow asymmetric occurs were examined under each condition. Results of the isothermal case agree well with previous numerical results. However, Compared with the isothermal case, smaller critical Reynolds numbers are found under both of heating and cooling conditions. In addition, the critical Reynolds numbers decrease with the increasing of heating/cooling intensity each under these two conditions. Furthermore, a new concept from the viewpoint of field synergy is introduced to illustrate this phenomenon of the reduction of flow stability.


2006 ◽  
Vol 129 (7) ◽  
pp. 819-826 ◽  
Author(s):  
M. Thiruvengadam ◽  
B. F. Armaly ◽  
J. A. Drallmeier

Simulations of three-dimensional laminar mixed convection in a vertical duct with plane symmetric sudden expansion are presented to illustrate the effects of the buoyancy-assisting force and the duct’s aspect ratio on flow bifurcation and heat transfer. The stable laminar bifurcated flow regime that develops in this geometry at low buoyancy levels leads to nonsymmetric temperature and heat transfer distributions in the transverse direction, but symmetric distributions with respect to the center width of the duct in the spanwise direction. As the buoyancy force increases, due to increases in wall heat flux, flow bifurcation diminishes and both the flow and the thermal fields become symmetric at a critical wall heat flux. The size of the primary recirculation flow region adjacent to the sudden expansion increases on one of the stepped walls and decreases on the other stepped wall as the wall heat flux increases. The maximum Nusselt number that develops on one of the stepped walls in the bifurcated flow regime is significantly larger than the one that develops on the other stepped wall. The critical wall heat flux increases as the duct’s aspect ratio increases for fixed Reynolds number. The maximum Nusselt number that develops in the bifurcated flow regime increases as the duct’s aspect ratio increases for fixed wall heat flux and Reynolds number.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Felipe A. S. Silva ◽  
Luis Júnior ◽  
José Silva ◽  
Sandilya Kambampati ◽  
Leandro Salviano

AbstractSolar Water Heater (SWH) has low efficiency and the performance of this type of device needs to be improved to provide useful and ecological sources of energy. The passive techniques of augmentation heat transfer are an effective strategy to increase the convective heat transfer coefficient without external equipment. In this way, recent investigations have been done to study the potential applications of different inserts including wire coils, vortex generators, and twisted tapes for several solar thermal applications. However, few researchers have investigated inserts in SWH which is useful in many sectors where the working fluid operates at moderate temperatures. The longitudinal vortex generators (LVG) have been applied to promote heat transfer enhancement with a low/moderate pressure drop penalty. Therefore, the present work investigated optimal geometric parameters of LVG to enhance the heat transfer for a SWH at low Reynolds number and laminar flow, using a 3D periodical numerical simulation based on the Finite Volume Method coupled to the Genetic Algorithm optimization method (NSGA-II). The LVG was stamped over a flat plate inserted inside a smooth tube operating under a typical residential application corresponding to Reynolds numbers of 300, 600, and 900. The geometric parameters of LGV were submitted to the optimization procedure which can find traditional LVG such as rectangular-winglet and delta-winglet or a mix of them. The results showed that the application of LGVs to enhance heat transfer is an effective passive technique. The different optimal shapes of the LVG for all Reynolds numbers evaluated improved more than 50% of heat transfer. The highest augmentation heat transfer of 62% is found for the Reynolds number 900. However, the best thermo-hydraulic efficiency value is found for the Reynolds number of 600 in which the heat transfer intensification represents 55% of the pressure drop penalty.


2019 ◽  
Vol 30 (7) ◽  
pp. 3827-3842
Author(s):  
Samer Ali ◽  
Zein Alabidin Shami ◽  
Ali Badran ◽  
Charbel Habchi

Purpose In this paper, self-sustained second mode oscillations of flexible vortex generator (FVG) are produced to enhance the heat transfer in two-dimensional laminar flow regime. The purpose of this study is to determine the critical Reynolds number at which FVG becomes more efficient than rigid vortex generators (RVGs). Design/methodology/approach Ten cases were studied with different Reynolds numbers varying from 200 to 2,000. The Nusselt number and friction coefficients of the FVG cases are compared to those of RVG and empty channel at the same Reynolds numbers. Findings For Reynolds numbers higher than 800, the FVG oscillates in the second mode causing a significant increase in the velocity gradients generating unsteady coherent flow structures. The highest performance was obtained at the maximum Reynolds number for which the global Nusselt number is improved by 35.3 and 41.4 per cent with respect to empty channel and rigid configuration, respectively. Moreover, the thermal enhancement factor corresponding to FVG is 72 per cent higher than that of RVG. Practical implications The results obtained here can help in the design of novel multifunctional heat exchangers/reactors by using flexible tabs and inserts instead of rigid ones. Originality/value The originality of this paper is the use of second mode oscillations of FVG to enhance heat transfer in laminar flow regime.


Author(s):  
Matthew A. Smith ◽  
Randall M. Mathison ◽  
Michael G. Dunn

Heat transfer distributions are presented for a stationary three passage serpentine internal cooling channel for a range of engine representative Reynolds numbers. The spacing between the sidewalls of the serpentine passage is fixed and the aspect ratio (AR) is adjusted to 1:1, 1:2, and 1:6 by changing the distance between the top and bottom walls. Data are presented for aspect ratios of 1:1 and 1:6 for smooth passage walls and for aspect ratios of 1:1, 1:2, and 1:6 for passages with two surfaces turbulated. For the turbulated cases, turbulators skewed 45° to the flow are installed on the top and bottom walls. The square turbulators are arranged in an offset parallel configuration with a fixed rib pitch-to-height ratio (P/e) of 10 and a rib height-to-hydraulic diameter ratio (e/Dh) range of 0.100 to 0.058 for AR 1:1 to 1:6, respectively. The experiments span a Reynolds number range of 4,000 to 130,000 based on the passage hydraulic diameter. While this experiment utilizes a basic layout similar to previous research, it is the first to run an aspect ratio as large as 1:6, and it also pushes the Reynolds number to higher values than were previously available for the 1:2 aspect ratio. The results demonstrate that while the normalized Nusselt number for the AR 1:2 configuration changes linearly with Reynolds number up to 130,000, there is a significant change in flow behavior between Re = 25,000 and Re = 50,000 for the aspect ratio 1:6 case. This suggests that while it may be possible to interpolate between points for different flow conditions, each geometric configuration must be investigated independently. The results show the highest heat transfer and the greatest heat transfer enhancement are obtained with the AR 1:6 configuration due to greater secondary flow development for both the smooth and turbulated cases. This enhancement was particularly notable for the AR 1:6 case for Reynolds numbers at or above 50,000.


Author(s):  
Francine Battaglia ◽  
George Papadopoulos

The effect of three-dimensionality on low Reynolds number flows past a symmetric sudden expansion in a channel was investigated. The geometric expansion ratio of in the current study was 2:1 and the aspect ratio was 6:1. Both experimental velocity measurements and two- and three-dimensional simulations for the flow along the centerplane of the rectangular duct are presented for Reynolds numbers in the range of 150 to 600. Comparison of the two-dimensional simulations with the experiments revealed that the simulations fail to capture completely the total expansion effect on the flow, which couples both geometric and hydrodynamic effects. To properly do so requires the definition of an effective expansion ratio, which is the ratio of the downstream and upstream hydraulic diameters and is therefore a function of both the expansion and aspect ratios. When the two-dimensional geometry was consistent with the effective expansion ratio, the new results agreed well with the three-dimensional simulations and the experiments. Furthermore, in the range of Reynolds numbers investigated, the laminar flow through the expansion underwent a symmetry-breaking bifurcation. The critical Reynolds number evaluated from the experiments and the simulations was compared to other values reported in the literature. Overall, side-wall proximity was found to enhance flow stability, helping to sustain laminar flow symmetry to higher Reynolds numbers in comparison to nominally two-dimensional double-expansion geometries. Lastly, and most importantly, when the logarithm of the critical Reynolds number from all these studies was plotted against the reciprocal of the effective expansion ratio, a linear trend emerged that uniquely captured the bifurcation dynamics of all symmetric double-sided planar expansions.


Sign in / Sign up

Export Citation Format

Share Document