Study of Machining-Induced Microstructure Variations of Nanostructured/Ultrafine-Grained Copper Using XRD

Author(s):  
Yong Huang ◽  
Mason Morehead

Various methods for the production of bulk nanostructured (NS)/ultrafine-grained (UFG) materials have been developed, including equal channel angular extrusion (ECAE), a form of severe plastic deformation. Using an ECAE NS/UFG copper bar as an example, this study has investigated machining-induced workpiece microstructure variation using X-ray diffraction. It has been found that (1) under gentle cutting conditions, there was a 10% increase in the median grain size compared with unmachined ECAE NS/UFG copper bars. Increases in the arithmetic-, area-, and volume-weighted grain sizes were found to be 10%, 8%, and 8%, respectively, and (2) an average 27% drop in the dislocation density was observed between the machined and unmachined ECAE copper bars. The dislocation density was shown to have the most reduction (−39%) at the outer radius of the machined ECAE bar where more heat and/or higher pressure were experienced.

2006 ◽  
Vol 114 ◽  
pp. 337-344 ◽  
Author(s):  
Bogusława Adamczyk-Cieślak ◽  
Jaroslaw Mizera ◽  
Krzysztof Jan Kurzydlowski

The texture of Al – 0.7 wt. % Li alloy processed by two different methods of severe plastic deformation (SPD) has been investigated by X-ray diffraction, and analyzed in terms of the orientation distribution function (ODF). It was found that severe plastic deformation by both Equal Channel Angular extrusion (ECAE) and Hydrostatic Extrusion (HE) resulted in an ultrafine grained structure in an Al – 0.7 wt. % Li alloy. The microstructure, grain shape and size, of materials produced by SPD strongly depend on the technological parameters and methods applied. The texture of the investigated alloy differed because of the different modes of deformation. In the initial state the alloy exhibited a very strong texture consisting of {111} fibre component. A similar fibrous texture characteristic was also found after HE whereas after the ECAE the initial texture was completely changed.


2007 ◽  
Vol 558-559 ◽  
pp. 1283-1294 ◽  
Author(s):  
Cheng Xu ◽  
Z. Horita ◽  
Terence G. Langdon

It is now well-established that processing through the application of severe plastic deformation (SPD) leads to a significant reduction in the grain size of a wide range of metallic materials. This paper examines the fabrication of ultrafine-grained materials using high-pressure torsion (HPT) where this process is attractive because it leads to exceptional grain refinement with grain sizes that often lie in the nanometer or submicrometer ranges. Two aspects of HPT are examined. First, processing by HPT is usually confined to samples in the form of very thin disks but recent experiments demonstrate the potential for extending HPT also to bulk samples. Second, since the strains imposed in HPT vary with the distance from the center of the disk, it is important to examine the development of inhomogeneities in disk samples processed by HPT.


2008 ◽  
Vol 1122 ◽  
Author(s):  
Gianguido Baldinozzi ◽  
David Simeone ◽  
Dominique Gosset ◽  
Mickael Dollé ◽  
Georgette Petot-Ervas

AbstractWe have synthesized Gd-doped ceria polycrystalline samples (5, 10, 15 %mol), having relative densities exceeding 95% and grain sizes between 30 and 160 nm after axial hot pressing (750 °C, 250 MPa). The samples were prepared by sintering nanopowders obtained by sol-gel chemistry methods having a very narrow size distribution centered at about 16 nm. SEM and X-ray diffraction were performed to characterize the sample microstructures and to assess their structures. We report ionic conductivity measurements using impedance spectroscopy. It is important to investigate the properties of these systems with sub-micrometric grains and as a function of their composition. Therefore, samples having micrometric and nanometric grain sizes (and different Gd content) were studied. Evidence of Gd segregation near the grain boundaries is given and the impact on the ionic conductivity, as a function of the grain size and Gd composition, is discussed and compared to microcrystalline samples.


1961 ◽  
Vol 5 ◽  
pp. 335-354 ◽  
Author(s):  
Fernand Claisse ◽  
Claude Samson

AbstractA fundamental quantitative treatment of the heterogeneity effects in X-ray fluorescence has been made. The theory predicts that the grain-size effect appears only in a limited region of grain sizes which depends on the wavelength of the primary radiation and the nature of the compounds in the mixture. With monochromatic radiation, the fluorescence intensity showed increase or decrease by a factor of a few units as grain size is decreased, A factor as large as 12, the theoretical value, has been observed in one particular experiment. Usually the grain-size effect can be eliminated by intensive grinding. For the light elements fine grinding is disastrous if long wavelengths are used. By an appropriate choice of the wavelength it is possible to eliminate the effect even without grinding. The mathematical treatment also predicts, but less rigorously, a grain-size effect in X-ray diffraction.The effect on the fluorescence intensities by changes in the chemical composition of the grains that contain the fluorescent element is predicted by the theory.These findings are discussed in relation to the analysis of elements when polychromatic beams are used.


2009 ◽  
Vol 24 (3) ◽  
pp. 228-233 ◽  
Author(s):  
S. R. Aghdaee ◽  
V. Soleimanian

The modified Williamson–Hall and Warren–Averbach methods were used successfully for analyzing experimentally observed anisotropic X-ray diffraction line broadening and for determining reliable values of crystallite size and dislocation density in cerium oxide. The modified Williamson–Hall plot gives 22.3(2) nm for volume-weighted crystallite size, while the modified Warren–Averbach produces 18.0(2) nm for area-weighted grain size. The dislocation density and effective outer cut-off radius of dislocations obtained from the modified Warren–Averbach method are 1.8(3)×1015 m−2 and 15.5(1) nm, respectively.


Author(s):  
Xueliang Kang ◽  
Shiyun Dong ◽  
Hongbin Wang ◽  
Xiaoting Liu ◽  
Shixing Yan

Seven specimens of 45 steel with different residual strains were prepared by homogeneous plastic tensile test. The microstructure of the specimens was observed by scanning electron microscopy and the texture characteristics of the specimens were studied by X-ray diffraction. The results showed that plastic deformation mainly leads to dislocation increment in the microstructure rather than obvious deformed grain morphology, texture and residual stress. Then the dislocation density of each sample was calculated by X-ray diffraction method. The MBN signals of the samples were tested by magnetic Barkhausen noise method and the corresponding RMS (root mean square) values were calculated. The results showed that the dislocation density increases and the RMS value decreases with the increase of plastic deformation magnitude, the phenomenon was explained deeply. By establishing the correlation between dislocation density and RMS value, it was found that there was a good linear relationship between dislocation density and RMS value. According to the formula provided by the fitting curve, the dislocation density can be predicted by measuring the RMS value of any degree of plastic deformation.


2000 ◽  
Vol 634 ◽  
Author(s):  
T. Ungár ◽  
G. Tichy ◽  
P. G. Sanders ◽  
J. R. Weertman

ABSTRACTUsing the dislocation model of strain anisotropy in X-ray diffraction peak profile analysis it is shown that in nanocrystalline copper produced by inert gas condensation dislocations are present, at least, down to average grain sizes of the order of 20 nm. Based on the analysis of the dislocation contrast factors it is suggested that with decreasing grain size the proportion of Lomer-Cottrell type dislocations increases.


2012 ◽  
Vol 1426 ◽  
pp. 359-364
Author(s):  
Siva Konduri ◽  
Max Noack ◽  
Vikram Dalal

ABSTRACTIn this paper, we report on deposition and properties of nanocrystalline Ge:H films . The films were grown from germane and hydrogen mixtures using Radio frequency Plasma-enhanced chemical vapor deposition (RF-PECVD) process using ∼45 MHz frequency. The crystallinity of the films was measured using Raman measurements and from x-ray diffraction techniques, it was found that the grain size was a strong function of deposition pressure, temperature and hydrogen/germane ratios. High hydrogen ratios and high powers led to films with smaller grains. Higher pressures and smaller hydrogen/germane ratio led to films with larger grain sizes, as did higher growth temperatures. The mobility of electrons and holes was measured using space charge limited current (SCLC) techniques in n+-n-n+ devices. It was found that nominally undoped films were generally n type with carrier concentrations in the 1E14/cm3 range. Mobility was found to increase with grain size, with 60 nm grains showing mobility in the 2-3 cm2/V-s range.


2010 ◽  
Vol 667-669 ◽  
pp. 571-576
Author(s):  
Sayed Ghafar Hashemi ◽  
Beitallah Eghbali

In the present research, the microstructural features of ultrafine grained Cu-30 Zn alloy via ARB at room temperature were investigated by X-ray diffraction peak profile analysis. The character of dislocations was determined by analyzing the dislocation contrast factors. The average contrast factors for the different reflections obtained by determination of the type of dislocations and Burgers vectors in crystals. Also, using the modified Williamson–Hall and Warren–Averbach procedure size parameters, the effective outer cut-off radius and density of dislocations were determined. Assuming that the grain size distribution is log-normal, the median and the variance of the size distribution of sub grains were obtained. It was found that the crystallite size is reduced substantially, while the dislocation density increases up to 2 cycles of ARB. After 2nd cycle, dislocation density decreases. This is attributed to the occurrence of dynamic restoration process which takes place during next ARB cycles.


Sign in / Sign up

Export Citation Format

Share Document