Effect of Blade Inclination Angle on a Darrieus Wind Turbine

2011 ◽  
Vol 134 (3) ◽  
Author(s):  
Marco Raciti Castelli ◽  
Ernesto Benini

This paper presents a model for the evaluation of energy performance and aerodynamic forces acting on a small helical Darrieus vertical axis wind turbine depending on blade inclination angle. It consists of an analytical code coupled to a solid modeling software capable of generating the desired blade geometry depending on the desired design geometric parameters, which is linked to a finite volume CFD code for the calculation of rotor performance. After describing and validating the model with experimental data, the results of numerical simulations are proposed on the bases of five machine architectures, which are characterized by an inclination of the blades with respect to the horizontal plane in order to generate a phase shift angle between lower and upper blade sections of 0 deg, 30 deg, 60 deg, 90 deg, and 120 deg for a rotor having an aspect ratio of 1.5. The effects of blade inclination on tangential and axial forces are first discussed and then the overall rotor torque is considered as a function of azimuthal position of the blades. Finally, the downstream tip recirculation zone due to the finite blade extension is analyzed for each blade inclination angle, achieving a numerical quantification of the influence of induced drag on rotor performance, as a function of both blade element longitudinal and azimuthal positions of the blade itself.

Author(s):  
Marco Raciti Castelli ◽  
Ernesto Benini

This paper presents a model for the evaluation of energy performance and aerodynamic forces acting on a small helical Darrieus vertical axis wind turbine depending on blade inclination angle. It consists of an analytical code coupled to a solid modeling software, capable of generating the desired blade geometry depending on the desired design geometric parameters, which is linked to a finite volume CFD code for the calculation of rotor performance. After describing and validating the model with experimental data, the results of numerical simulations are proposed on the bases of five machine architectures, which are characterized by an inclination of the blades with respect to the horizontal plane in order to generate a phase shift angle between lower and upper blade sections of 0°, 30°, 60°, 90° and 120° for a rotor having an aspect ratio of 1.5. The effects of blade inclination on tangential and axial forces are first discussed and then the overall rotor torque is considered as a function of azimuthal position of the blades. Finally, the downstream tip recirculation zone due to the finite blade extension is analyzed for each blade inclination angle, achieving a numerical quantification of the influence of induced drag on rotor performance, as a function of both blade element longitudinal and azimuthal positions of the blade itself.


This paper studies the potential for installing roofmounted Vertical Axis Wind Turbine (VAWT) systems on house roofs with the goal of maximizing the efficiency and reducing the cost and weight of the turbine. The efficiency of the wind turbine depends on the material, shape and angle of the blade. So material of the turbine blade is an important factor in the design of wind turbine. Most of the wind turbine blades are made of mild steel and stainless steel which has more density. It has huge weight, more high corrosion and less fatigue strength. The steel can be replaced by aluminum material to reduce the weight, to improve corrosion resistance, to make them more affordable, efficient, durable and sustainable. In this paper, Aluminum material was used to design savonius wind blades of 1 m height and 0.5 m chord length with 4 different arc radii. CAD modeling software Solid Works was used to model wind blade and static structural and modal analysis of the Aluminum blade was done by using ANSYS Workbench software. This size of turbine can be most suitable for small houses in urban areas to produce electricity.


2020 ◽  
Vol 8 (2) ◽  
pp. 43
Author(s):  
Yoga Arob Wicaksono

Turbin angin adalah salah satu alternatif untuk mengurangi beban listrik di wilayah perkotaan. Di wilayah perkotaan terdapat gedung bertingkat dengan jumlah yang cukup banyak. Sehingga menjadi lokasi yang tepat untuk aplikasi turbin angin sekaligus mengurangi beban listrik. Tipe turbin yang tepat untuk aplikasi gedung bertingkat adalah turbin angin sumbu vertikal (VAWT). Salah satu jenis VAWT adalah turbin Savonius. Turbin angin Savonius konvensional memiliki kinerja yang rendah seperti koefisien daya dan torsi yang rendah dibandingkan dengan turbin angin jenis lain. Ini terjadi karena aliran angin dapat menyebabkan tekanan negatif pada salah satu sisi sudu. Untuk mengatasi masalah ini, turbin angin Savonius konvensional dikombinasikan dengan guide vane. Tujuan dari penelitian ini adalah untuk mempelajari pengaruh guide vane terhadap performa dan karakteristik pola aliran sekitar turbin angin Savonius. Model numerik dihitung menggunakan persamaan Navier-Stokes dengan model turbulen k-ε standar. Analisa  menggunakan software ANSYS-Fluent R15. Simulasi dilakukan pada arah angin yang berbeda, antara lain: 0o, 30o, 60o pada kecepatan angin 2 m/s. Hasil penelitian menunjukkan bahwa guide vane mampu menambah laju aliran udara yang menuju sudu turbin dan meningkatkan performa turbin angin Savonius sebesar 22,2%. Kata kunci: CFD, guide vane, performa, pola aliran, turbin angin SavoniusDaftar RujukanAkwa, J. V., Alves, G., & Petry, A. P. (2012). Discussion on the veri fi cation of the overlap ratio in fl uence on performance coef fi cients of a Savonius wind rotor using computational fl uid dynamics. 38, 141–149. https://doi.org/10.1016/j.renene.2011.07.013Akwa, J. V., Vielmo, H. A., & Petry, A. P. (2012). A review on the performance of Savonius wind turbines. Renewable and Sustainable Energy Reviews, 16(5), 3054–3064. https://doi.org/10.1016/j.rser.2012.02.056Alessandro, V. D., Montelpare, S., Ricci, R., & Secchiaroli, A. (2010). Unsteady Aerodynamics of a Savonius wind rotor : a new computational approach for the simulation of energy performance. Energy, 35(8), 3349–3363. https://doi.org/10.1016/j.energy.2010.04.021Chong, W. T., Fazlizan, A., Poh, S. C., Pan, K. C., Hew, W. P., & Hsiao, F. B. (2013). The design , simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane q. APPLIED ENERGY, 5–8. https://doi.org/10.1016/j.apenergy.2012.12.064Chong, W. T., Poh, S. C., Abdullah, N., Naghavi, M. S., & Pan, K. C. (2010). Vertical Axis Wind Turbine with Power-Augmentation-Guide-Vane for Urban High Rise Application 3 . Building integrated wind-solar hybrid energy generation system and rain water collector. (September), 1–6.Damak,  a., Driss, Z., & Abid, M. S. (2013). Experimental investigation of helical Savonius rotor with a twist of 180?? Renewable Energy, 52, 136–142. https://doi.org/10.1016/j.renene.2012.10.043Hasan, M. H., Muzammil, W. K., Mahlia, T. M. I., Jannifar, A., & Hasanuddin, I. (2012). A review on the pattern of electricity generation and emission in Indonesia from 1987 to 2009. Renewable and Sustainable Energy Reviews, 16(5), 3206–3219. https://doi.org/10.1016/j.rser.2012.01.075Mohamed, M. H., Janiga, G., Pap, E., & Thévenin, D. (2010). Optimization of Savonius turbines using an obstacle shielding the returning blade. Renewable Energy, 35(11), 2618–2626. https://doi.org/10.1016/j.renene.2010.04.007Nobile, R., Vahdati, M., & Barlow, J. F. (2013). Unsteady flow simulation of a vertical axis wind turbine : a two-dimensional study. (July), 1–10.Pope, K., Rodrigues, V., Doyle, R., Tsopelas,  a., Gravelsins, R., Naterer, G. F., & Tsang, E. (2010). Effects of stator vanes on power coefficients of a zephyr vertical axis wind turbine. Renewable Energy, 35(5), 1043–1051. https://doi.org/10.1016/j.renene.2009.10.012Ricci, R., Romagnoli, R., Montelpare, S., & Vitali, D. (2016). Experimental study on a Savonius wind rotor for street lighting systems q. Applied Energy, 161, 143–152. https://doi.org/10.1016/j.apenergy.2015.10.012Roy, S., & Saha, U. K. (2015). Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine. Applied Energy, 137, 117–125. https://doi.org/10.1016/j.apenergy.2014.10.022Soo, K., Ik, J., Pan, J., & Ryu, K. (2015). Effects of end plates with various shapes and sizes on helical Savonius wind turbines. Renewable Energy, 79, 167–176. https://doi.org/10.1016/j.renene.2014.11.035Tartuferi, M., D’Alessandro, V., Montelpare, S., & Ricci, R. (2015). Enhancement of Savonius wind rotor aerodynamic performance: a computational study of new blade shapes and curtain systems. Energy, 79, 371–384. https://doi.org/10.1016/j.energy.2014.11.023Walker, S. L. (2011). Building mounted wind turbines and their suitability for the urban scale — A review of methods of estimating urban wind resource. Energy & Buildings, 43(8), 1852–1862. https://doi.org/10.1016/j.enbuild.2011.03.032 


This paper studies roof mounted savonius type Vertical Axis Wind Turbine systems with the goal of maximizing the efficiency and reducing the cost. The efficiency of the wind turbine depends on the material, shape and angle of the blade. So material plays an important role in the design of wind turbine. In this paper, Stainless Steel and Aluminum material are used to design savonius wind blades of 1 m height and 0.5 m chord length with 4 different arc radii. Modeling software Solid Works is used to model savonius wind blade and static structural and modal analysis of the Stainless Steel and Aluminum blades are done by using ANSYS Workbench software


2012 ◽  
Vol 34 (3) ◽  
pp. 169-184 ◽  
Author(s):  
Hoang Thi Bich Ngoc

Vertical axis wind turbine technology has been applied last years, very long after horizontal axis wind turbine technology. Aerodynamic problems of vertical axis wind machines are discussible. An important problem is the determination of the incidence law in the interaction between wind and rotor blades. The focus of the work is to establish equations of the incidence depending on the blade azimuth, and to solve them. From these results, aerodynamic torques and power can be calculated. The incidence angle is a parameter of velocity triangle, and both the factors depend not only on the blade azimuth but also on the ratio of rotational speed and horizontal speed. The built computational program allows theoretically selecting the relationship of geometric parameters of wind turbine in accordance with requirements on power, wind speed and installation conditions.


2017 ◽  
Author(s):  
Prof. R.K. Bhoyar ◽  
Prof. S.J. Bhadang ◽  
Prof. N.Z. Adakane ◽  
Prof. N.D. Pachkawade

Sign in / Sign up

Export Citation Format

Share Document