Freestream Flow Effects on Film Effectiveness and Heat Transfer Coefficient Augmentation for Compound Angle Shaped Holes

Author(s):  
Joshua B. Anderson ◽  
John W. McClintic ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
Zachary Webster

The use of compound-angled shaped film cooling holes in gas turbines provides a method for cooling regions of extreme curvature on turbine blades or vanes. These configurations have received surprisingly little attention in the film cooling literature. In this study, a row of laid-back fanshaped holes based on an open-literature design, were oriented at a 45-degree compound angle to the approaching freestream flow. In this study, the influence of the approach flow boundary layer thickness and character were experimentally investigated. A trip wire and turbulence generator were used to vary the boundary layer thickness and freestream conditions from a thin laminar boundary layer flow to a fully turbulent boundary layer and freestream at the hole breakout location. Steady-state adiabatic effectiveness and heat transfer coefficient augmentation were measured using high-resolution IR thermography, which allowed the use of an elevated density ratio of DR = 1.20. The results show adiabatic effectiveness was generally lower than for axially-oriented holes of the same geometry, and that boundary layer thickness was an important parameter in predicting effectiveness of the holes. Heat transfer coefficient augmentation was highly dependent on the freestream turbulence levels as well as boundary layer thickness, and significant spatial variations were observed.

Author(s):  
Joshua B. Anderson ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
Zachary Webster

The injection of film cooling can have a strong impact on the heat transfer coefficient (HTC) between the overflowing freestream gas and the cooled surface. This study investigated the influence of approach flow characteristics, including the boundary layer thickness and character (laminar and turbulent), as well as the approach flow Reynolds number, on the HTC. The influence of these parameters was previously unreported in the open film cooling literature. The figure of merit for this study was the HTC augmentation, that is the ratio of heat transfer coefficients for a cooled vs. uncooled surface. For this work, a direct measurement of the heat transfer coefficient was made, using a heated foil surface which provided a known wall heat flux. Generally for this type of measurement, a flux foil is placed downstream of the coolant hole. However, for this experimental program a heat flux foil was also placed upstream of the film cooling holes, in order to generate an upstream thermal boundary layer which would be more representative of actual engine conditions. Such a configuration has rarely been seen in published studies. An open-literature shaped-hole design was used, known as the 7-7-7 hole, in order to compare with existing results in the literature. A variety of blowing conditions were tested from M = 0.5–3.0. Two elevated density ratios of DR = 1.20 and DR = 1.80 were used. High-resolution IR thermography was used for these measurements, providing a highly-accurate and spatially-resolved measurement of HTC augmentation. The results indicated that turbulent boundary layer thickness had a modest effect on HTC augmentation, whereas a very high level of augmentation was observed for a laminar approach boundary layer. The presence of upstream heating greatly increased the HTC augmentation in the near-hole region, although these effects died out by 10–15 diameters from the holes.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Joshua B. Anderson ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
Zachary Webster

Film cooling can have a significant effect on the heat transfer coefficient (HTC) between the overflowing freestream gas and the underlying surface. This study investigated the influence of approach flow characteristics, including the boundary layer thickness and character (laminar and turbulent), as well as the approach flow Reynolds number, on the HTC. The figure of merit for this study was the HTC augmentation, that is, the ratio of HTCs for a cooled versus uncooled surface. A heated foil surface provided a known heat flux, allowing direct measurement of HTC and augmentation. The foil was placed both upstream and downstream of the film cooling holes, in order to generate an approaching thermal boundary layer, as representative of actual engine conditions. High-resolution IR thermography provided spatially resolved HTC augmentation data. An open-literature shaped-hole design was used, known as the 7-7-7 hole, in order to compare with existing results in the literature. A variety of blowing conditions were tested from M = 0.5 to 3.0. Two elevated density ratios of DR = 1.20 and DR = 1.80 were used. The results indicated that turbulent boundary layer thickness had a modest effect on HTC augmentation, whereas a very high level of augmentation was observed for a laminar approach boundary layer. The presence of upstream heating greatly increased the HTC augmentation in the near-hole region, although these effects died out by 10–15 diameters from the holes.


Author(s):  
James E. Mayhew ◽  
James W. Baughn ◽  
Aaron R. Byerley

The film-cooling performance of a flat plate in the presence of low and high freestream turbulence is investigated using thermochromic liquid crystal thermography. Distributions of the convective heat transfer coefficient and adiabatic effectiveness are determined over the film-cooled surface of the flat plate. Three blowing rates are investigated for a model with one hole oriented at a compound angle of 45° and with an injection angle of 30° from the flat plate surface. An increase in heat transfer coefficient due to mass injection is clearly observed in the images and is quantitatively determined for both the low and high freestream turbulence cases. The increase in heat transfer coefficient is greater than in previously published research, possibly due to the use of different, more representative thermal boundary conditions upstream of the injection location. At low blowing ratio, freestream turbulence is shown to reduce the adiabatic effectiveness due to increased mixing between the cooling air and the main flow. However, at high blowing ratio, when much of the jet has lifted off in the low turbulence case, high freestream turbulence turns its increased mixing into an asset, entraining some of the coolant that penetrates into the main flow and mixing it with the air near the surface. This paper also contributes high-resolution contour plots that show the wider spreading of cooling air over the film-cooled surface as a result of high turbulence, and the asymmetric regions of high heat transfer.


2020 ◽  
pp. 1-30
Author(s):  
Shane Haydt ◽  
Stephen Lynch

Abstract Film cooling holes with shaped diffusers are used to efficiently deliver coolant to the surface of a gas turbine part to keep metal temperatures low. Reducing the heat flux into a component, relative to a case with no coolant injection, is the ultimate goal of film cooling. This reduction in heat flux is primarily achieved via a lower driving temperature at the wall for convection, represented by the adiabatic effectiveness. Another important consideration, however, is how the disturbance to the flowfield and thermal field caused by the injection of coolant augments the heat transfer coefficient. The present study examines the spatially-resolved heat transfer coefficient augmentation, measured using a constant heat flux foil and IR thermography, for a shaped film cooling hole at a range of compound angles. Results show that the heat transfer coefficient increases with compound angle and with blowing ratio. Due to the unique asymmetric flowfield of a compound angle hole, a significant amount of augmentation occurs to the side of the film cooling jet, where very little coolant is present. This causes local regions of increased heat flux, which is counter to the goal of film cooling. Heat transfer results are compared with adiabatic effectiveness and flowfield measurements from a previous study.


Author(s):  
Shane Haydt ◽  
Stephen Lynch

Abstract Shaped film cooling holes are used to efficiently deliver coolant to the surface of a gas turbine part to keep metal temperatures low. The ultimate goal of film cooling is to reduce the heat flux into a component, relative to a case with no coolant injection. This reduction in heat flux is primarily achieved via a lower driving temperature at the wall for convection, represented by the adiabatic effectiveness. Another important consideration, however, is how the disturbance to the flowfield and thermal field caused by the injection of coolant augments the heat transfer coefficient. The present study examines the spatially-resolved heat transfer coefficient augmentation for a shaped film cooling hole at a range of compound angles, using a constant heat flux foil and IR thermography. Results show that the heat transfer coefficient increases with compound angle and with blowing ratio. Due to the unique asymmetric flowfield of a compound angle hole, a significant amount of augmentation occurs to the side of the film cooling jet, where very little coolant is present. This causes local regions of increased heat flux, which is counter to the goal of film cooling. Heat transfer results are compared with adiabatic effectiveness and flowfield measurements from a previous study.


Author(s):  
David J. Seager ◽  
James A. Liburdy

To further understand the effect of compound angle holes and hole shaping on film cooling, detailed heat transfer measurements were obtained using a hue based thermochromic liquid crystal method. This technique is fully described based on its development for film cooling applications. The data were analyzed to determine both the full surface adiabatic effectiveness and the heat transfer coefficient. The compound angles that are presented consist of holes aligned at 0° (streamwise) and 45° to the main cross flow direction. Hole shaping variations from the traditional cylindrically shaped hole include forward diffused and laterally diffused hole configurations. The length to diameter ratio (L/D) was 4.0, the pitch to diameter ratio (P/D) was 3.0, and the inclination angle (α) was 35°. A density ratio (DR) of 1.55 was obtained for all tests using carbon dioxide as the injection fluid into an air stream. For each set of conditions the blowing ratio (M) was varied to be 0.88, 1.25, and 1.88. Adiabatic effectiveness was obtained using a steady state test, while an active heating surface (constant, uniform heat flux) was used to determine the heat transfer coefficient using a transient method.


Author(s):  
Vinod U. Kakade ◽  
Steven J. Thorpe ◽  
Miklós Gerendás

The thermal management of aero gas turbine engine combustion systems commonly employs effusion-cooling in combination with various cold-side convective cooling schemes. The combustor liner incorporates many small holes which are usually set in staggered arrays and at a shallow angle to the cooled surface; relatively cold compressor delivery air is then allowed to flow through these holes to provide the full-coverage film-cooling effect. The efficient design of such systems requires robust correlations of film-cooling effectiveness and heat transfer coefficient at a range of aero-thermal conditions, and the use of appropriately validated computational models. However, the flow conditions within a combustor are characterised by particularly high turbulence levels and relatively large length scales. The experimental evidence for performance of effusion-cooling under such flow conditions is currently sparse. The work reported here is aimed at quantifying typical effusion-cooling performance at a range of combustor relevant free-stream conditions (high turbulence), and also to assess the importance of modeling the coolant to free-stream density ratio. Details of a new laboratory wind-tunnel facility for the investigation of film-cooling at high turbulence levels are reported. For a typical combustor effusion geometry that uses cylindrical holes, spatially resolved measurements of adiabatic effectiveness, heat transfer coefficient and net heat flux reduction are presented for a range of blowing ratios (0.48 to 2), free-stream turbulence conditions (4 and 22%) and density ratios (0.97 and 1.47). The measurements reveal that elevated free-stream turbulence impacts on both the adiabatic effectiveness and heat transfer coefficient, although this is dependent upon the blowing ratio being employed and particularly the extent to which the coolant jets detach from the surface. At low blowing ratios the presence of high turbulence levels causes increased lateral spreading of the coolant adjacent to the injection points, but more rapid degradation in the downstream direction. At high blowing ratios, high turbulence levels cause a modest increase in effectiveness due to turbulent transport of the detached coolant fluid. Additionally, the augmentation of heat transfer coefficient caused by the coolant injection is seen to be increased at high free-stream turbulence levels.


Author(s):  
Donald L. Schmidt ◽  
David G. Bogard

A flat plate test section was used to study how high free-stream turbulence with large turbulence length scales, representative of the turbine environment, affect the film cooling adiabatic effectiveness and heat transfer coefficient for a round hole film cooling geometry. This study also examined cooling performance with combined high free-stream turbulence and a rough surface which simulated the roughness representative of an in-service turbine. The injection was from a single row of film cooling holes with injection angle of 30°. The density ratio of the injectant to the mainstream was 2.0 for the adiabatic effectiveness tests, and 1.0 for the heat transfer coefficient tests. Streamwise and lateral distributions of adiabatic effectiveness and heat transfer coefficients were obtained at locations from 2 to 90 hole diameters downstream. At small to moderate momentum flux ratios, which would normally be considered optimum blowing conditions, high free-stream turbulence dramatically decreased adiabatic effectiveness. However, at large momentum flux ratios, conditions for which the film cooling jet would normally be detached, high free-stream turbulence caused an increase in adiabatic effectiveness. The combination of high free-stream turbulence with surface roughness resulted in an increase in adiabatic effectiveness relative to the smooth wall with high free-stream turbulence. Heat transfer rates were relatively unaffected by a film cooling injection. The key result from this study was a substantial increase in the momentum flux ratios for maximum film cooling performance which occurred for high free-stream turbulence and surface roughness conditions which are more representative of actual turbine conditions.


Author(s):  
Vijay K. Garg ◽  
Raymond E. Gaugler

An existing three-dimensional Navier-Stokes code (Arnone et al., 1991), modified to include film cooling considerations (Garg and Gaugler, 1994), has been used to study the effect of spanwise pitch of shower-head holes and coolant to mainstream mass flow ratio on the adiabatic effectiveness and heat transfer coefficient on a film-cooled turbine vane. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. It is found that with the coolant to mainstream mass flow ratio fixed, reducing P, the spanwise pitch for shower-head holes, from 7.5 d to 3.0 d, where d is the hole diameter, increases the average effectiveness considerably over the blade surface. However, when P/d = 7.5, increasing the coolant mass flow increases the effectiveness on the pressure surface but reduces it on the suction surface due to coolant jet lift-off. For P/d = 4.5 or 3.0, such an anomaly does not occur within the range of coolant to mainstream mass flow ratios analyzed. In all cases, adiabatic effectiveness and heat transfer coefficient are highly three-dimensional.


Sign in / Sign up

Export Citation Format

Share Document