Characteristics of Turbulent Three-Dimensional Offset Jets

2011 ◽  
Vol 133 (5) ◽  
Author(s):  
M. Agelin-Chaab ◽  
M. F. Tachie

Three-dimensional turbulent offset jets were investigated using a particle image velocimetry technique. Three jet exit Reynolds numbers, Rej = 5000, 10,000, and 20,000, and four offset heights, h/d = 0.5, 1.0, 2.0, and 4.0, were studied. The mean flow and turbulence statistics were studied over larger downstream distances than in previous studies. The decay and spread rates were found to be nearly independent of Reynolds number and offset height at certain exit diameters (x = 73d) downstream and h/d ≤ 2. The decay rates of 1.18 ± 0.03 and spread rates of 0.055 ± 0.001 and 0.250 ± 0.005 in the wall-normal and lateral directions were obtained, respectively. The reattachment lengths are also independent of Rej but increase with offset height. The locations of the maximum mean velocities increased linearly with streamwise distance in the self-similar region. It was observed that profiles of the mean velocities, turbulence intensities, and Reynolds shears stresses are nearly independent of Rej and h/d far downstream. The triple products in the symmetry plane indicated turbulence transport from the outer region of the jet towards the wall region.

Author(s):  
M. Agelinchaab ◽  
M. F. Tachie

This paper reports an experimental study of turbulent three-dimensional generic wall jets and offset jets. The jets were created from a long circular pipe. A particle image velocimetry technique was used to conduct velocity measurements in the symmetry plane of the jet. From these measurements, the salient features of the flows are reported in terms of the mean velocities, turbulence intensities and Reynolds shear stresses. The energy spectra and profiles of reconstructed turbulence intensities and Reynolds shear stresses from low order proper orthogonal decomposition modes are also reported.


1999 ◽  
Vol 394 ◽  
pp. 303-337 ◽  
Author(s):  
A. VERNET ◽  
G. A. KOPP ◽  
J. A. FERRÉ ◽  
FRANCESC GIRALT

Simultaneous velocity and temperature measurements were made with rakes of sensors that sliced a slightly heated turbulent wake in the spanwise direction, at different lateral positions 150 diameters downstream of the cylinder. A pattern recognition analysis of hotter-to-colder transitions was performed on temperature data measured at the mean velocity half-width. The velocity data from the different ‘slices’ was then conditionally averaged based on the identified temperature events. This procedure yielded the topology of the average three-dimensional large-scale structure which was visualized with iso-surfaces of negative values of the second eigenvector of [S2+Ω2]. The results indicate that the average structure of the velocity fluctuations (using a triple decomposition of the velocity field) is found to be a shear-aligned ring-shaped vortex. This vortex ring has strong outward lateral velocities in its symmetry plane which are like Grant's mixing jets. The mixing jet region extends outside the ring-like vortex and is bounded by two foci separated in the spanwise direction and an upstream saddle point. The two foci correspond to what has been previously identified in the literature as the double rollers.The ring vortex extracts energy from the mean flow by stretching in the mixing jet region just upstream of the ring boundary. The production of the small-scale (incoherent) turbulence by the coherent field and one-component energy dissipation rate occur just downstream of the saddle point within the mixing jet region. Incoherent turbulence energy is extracted from the mean flow just outside the mixing jet region, but within the core of the structure. These processes are highly three-dimensional with a spanwise extent equal to the mean velocity half-width.When a double decomposition is used, the coherent structure is found to be a tube-shaped vortex with a spanwise extent of about 2.5l0. The double roller motions are integral to this vortex in spite of its shape. Spatial averages of the coherent velocity field indicate that the mixing jet region causes a deficit of mean streamwise momentum, while the region outside the foci of the double rollers has a relatively small excess of streamwise momentum.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 237
Author(s):  
Ming Chen ◽  
Haijin Huang ◽  
Xingxing Zhang ◽  
Senpeng Lv ◽  
Rengmin Li

Three-dimensional (3D) confined wall jets have various engineering applications related to efficient energy dissipation. This paper presents experimental measurements of mean flow development for a 3D rectangular wall jet confined by a vertical baffle with a fixed distance (400 mm) from its surface to the nozzle. Experiments were performed at three different Reynolds numbers of 8333, 10,000 and 11,666 based on jet exit velocity and square root of jet exit area (named as B), with water depth of 100 mm. Detailed measurements of current jet were taken using a particle image velocimetry technique. The results indicate that the confined jet seems to behave like an undisturbed jet until 16B downstream. Beyond this position, however, the mean flow development starts to be gradually affected by the baffle confinement. The baffle increases the decay and spreading of the mean flow from 16B to 23B. The decay rate of 1.11 as well as vertical and lateral growth rates of 0.04 and 0.19, respectively, were obtained for the present study, and also fell well within the range of values which correspond to the results in the radial decay region for the unconfined case. In addition, the measurements of the velocity profiles, spreading rates and velocity decay were also found to be independent of Reynolds number. Therefore, the flow field in this region appears to have fully developed at least 4B earlier than the unconfined case. Further downstream (after 23B), the confinement becomes more pronounced. The vertical spreading of current jet shows a distinct increase, while the lateral growth was found to be decreased significantly. It can be also observed that the maximum mean velocity decreases sharply close to the baffle.


1978 ◽  
Vol 85 (1) ◽  
pp. 33-56 ◽  
Author(s):  
K. S. Hebbar ◽  
W. L. Melnik

An experimental investigation was conducted at selected locations in the wall region of a three-dimensional turbulent boundary layer relaxing in a nominally zero external pressure gradient behind a transverse hump (in the form of a 30° swept, 5 ft chord, wing-type model) faired into the side wall of a low-speed wind tunnel. The boundary layer (approximately 3·5 in. thick near the first survey station, where the length Reynolds number was 5·5 × 106) had a maximum cross-flow velocity ratio of 0·145 and a maximum cross-flow angle of 21·9° close to the wall. The hot-wire data indicated that the apparent dimensionless velocity profiles in the viscous sublayer are universal and that the wall influence on the hot wire is negligible beyond y+= 5. The existence of wall similarity in the relaxing flow field was confirmed in the form of a log law based on the resultant mean velocity and resultant friction velocity (obtained from the measured skin friction).The smallest collateral region extended from the point nearest to the wall (y+≈ 1) up to y+= 9·7, corresponding to a resultant mean velocity ratio (local to free-stream) of 0·187. The unusual feature of these profiles was the presence of a narrow region of slightly decreasing cross-flow angle (1° or less) that extended from the point of maximum cross-flow angle down to the outer limit of the collateral region. A sublayer analysis of the flow field using the measured local transverse pressure gradient slightly overestimated the decrease in cross-flow angle. It is concluded that, in the absence of these gradients, the skewing of the flow could have been much more pronounced practically down to the wall (limited only by the resolution of the sensor), implying a near-wallnon-collateralflow field consistent with the equations of motion in the neighbourhood of the wall.The streamwise relaxation of the mean flow field based on the decay of the cross-flow angle was much faster in the inner layer than in the outer layer. Over the stream-wise distance covered, the mean flow in the inner layer and the wall shear-stress vector relaxed to a two-dimensional state in approximately 10 boundary-layer thicknesses whereas the relaxation of the turbulence was slower and was not complete over the same distance.


2018 ◽  
Vol 838 ◽  
pp. 516-543 ◽  
Author(s):  
T. Medjnoun ◽  
C. Vanderwel ◽  
B. Ganapathisubramani

An experimental investigation of a turbulent boundary-layer flow over a heterogeneous surface is carried out to examine the mean flow and turbulence characteristics, and to document the variation of skin friction that might affect the applicability of traditional scaling and similarity laws. The heterogeneity is imposed along the spanwise direction and consists of streamwise-aligned smooth raised strips whose spanwise spacing $S$ is comparable to the boundary-layer thickness ($S/\unicode[STIX]{x1D6FF}=O(1)$). Single-point velocity measurements alongside direct skin-friction measurements are used to examine the validity of Townsend’s similarity hypothesis. The skin-friction coefficients reveal that the drag of the heterogeneous surface increased up to 35 % compared to a smooth wall, while velocity measurements reveal the existence of a log layer but with a zero-plane displacement and a roughness function that vary across the spanwise direction. Lack of collapse in the outer region of the mean velocity and variance profiles is attributed to the secondary flows induced by the heterogeneous surfaces. Additionally, the lack of similarity also extends to the spectra across all scales in the near-wall region with a gradual collapse at small wavelengths for increasing $S$. This suggests that the effect of surface heterogeneity is not necessarily felt at the smaller scales other than to reorganise their presence through turbulent transport.


Author(s):  
Mounir Ibrahim ◽  
Terry Sanders ◽  
Douglas Darling ◽  
Michelle Zaller

To imitate resonances that might occur in the fuel delivery system of gas turbine combustors, the incoming liquid streams of two pressure swirl nozzles were perturbed using a piezoelectric driver. Frequencies of perturbations examined were from 3 to 20 kHz, and water was used as the test fluid. A video camera and a Phase Doppler Particle Analyzer (PDPA) were used to study the effect of perturbations on the mean flow quantities of the sprays. Various lighting arrangements were used for the video photography: back lighting, front lighting, a strobe synchronized with the input to the piezoelectric, and a laser sheet oriented along the midplane of the sprays. The study showed that the piezoelectric drive had an effect an the spray system at discrete frequencies. At these particular frequencies, by increasing the input voltage, it was found that the piezoelectric drive affected the atomization in the following ways: (1) the mean flow rate decreased, (2) the spray cone angle decreased, (3) the break up length decreased, (4) the peak of the spatial distribution of the mean droplet size decreased, and (5) the mean droplet sizes and velocities increased near the spray center line and decreased in the outer region of the spray. A hysteresis effect of the drive frequency on the spray cone angle was observed. The results indicated that more fundamental research is needed to gain an in-depth understanding of the physical processes induced in the spray by the piezoelectric drive.


Author(s):  
Davis W. Hoffman ◽  
Laura Villafañe ◽  
Christopher J. Elkins ◽  
John K. Eaton

Abstract Three-dimensional, three-component time-averaged velocity fields have been measured within a low-speed centrifugal fan with forward curved blades. The model investigated is representative of fans commonly used in automotive HVAC applications. The flow was analyzed at two Reynolds numbers for the same ratio of blade rotational speed to outlet flow velocity. The flow patterns inside the volute were found to have weak sensitivity to Reynolds number. A pair of counter-rotating vortices evolve circumferentially within the volute with positive and negative helicity in the upper and lower regions, respectively. Measurements have been further extended to capture phase-resolved flow features by synchronizing the data acquisition with the blade passing frequency. The mean flow field through each blade passage is presented including the jet-wake structure extending from the blade and the separation zone on the suction side of the blade leading edge.


2020 ◽  
Vol 17 (5) ◽  
pp. 1221-1236
Author(s):  
Hui-Huang Fang ◽  
Shu-Xun Sang ◽  
Shi-Qi Liu

Abstract The three-dimensional (3D) structures of pores directly affect the CH4 flow. Therefore, it is very important to analyze the 3D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carrier. The result shows that the equivalent radius of pores and throats are 1–16 μm and 1.03–8.9 μm, respectively, and the throat length is 3.28–231.25 μm. The coordination number of pores concentrates around three, and the intersection point between the connectivity function and the X-axis is 3–4 μm, which indicate the macro-pores have good connectivity. During the single-channel flow, the pressure decreases along the direction of CH4 flow, and the flow velocity of CH4 decreases from the pore center to the wall. Under the dual-channel and the multi-channel flows, the pressure also decreases along the CH4 flow direction, while the velocity increases. The mean flow pressure gradually decreases with the increase of the distance from the inlet slice. The change of mean flow pressure is relatively stable in the direction horizontal to the bedding plane, while it is relatively large in the direction perpendicular to the bedding plane. The mean flow velocity in the direction horizontal to the bedding plane (Y-axis) is the largest, followed by that in the direction horizontal to the bedding plane (X-axis), and the mean flow velocity in the direction perpendicular to the bedding plane is the smallest.


2012 ◽  
Vol 699 ◽  
pp. 320-351 ◽  
Author(s):  
Johan Malm ◽  
Philipp Schlatter ◽  
Dan S. Henningson

AbstractDominant frequencies and coherent structures are investigated in a turbulent, three-dimensional and separated diffuser flow at $\mathit{Re}= 10\hspace{0.167em} 000$ (based on bulk velocity and inflow-duct height), where mean flow characteristics were first studied experimentally by Cherry, Elkins and Eaton (Intl J. Heat Fluid Flow, vol. 29, 2008, pp. 803–811) and later numerically by Ohlsson et al. (J. Fluid Mech., vol. 650, 2010, pp. 307–318). Coherent structures are educed by proper orthogonal decomposition (POD) of the flow, which together with time probes located in the flow domain are used to extract frequency information. The present study shows that the flow contains multiple phenomena, well separated in frequency space. Dominant large-scale frequencies in a narrow band $\mathit{St}\equiv fh/ {u}_{b} \in [0. 0092, 0. 014] $ (where $h$ is the inflow-duct height and ${u}_{b} $ is the bulk velocity), yielding time periods ${T}^{\ensuremath{\ast} } = T{u}_{b} / h\in [70, 110] $, are deduced from the time signal probes in the upper separated part of the diffuser. The associated structures identified by the POD are large streaks arising from a sinusoidal oscillating motion in the diffuser. Their individual contributions to the total kinetic energy, dominated by the mean flow, are, however, small. The reason for the oscillating movement in this low-frequency range is concluded to be the confinement of the flow in this particular geometric set-up in combination with the high Reynolds number and the large separated zone on the top diffuser wall. Based on this analysis, it is shown that the bulk of the streamwise root mean square (r.m.s.) value arises due to large-scale motion, which in turn can explain the appearance of two or more peaks in the streamwise r.m.s. value. The weak secondary flow present in the inflow duct is shown to survive into the diffuser, where it experiences an imbalance with respect to the upper expanding corners, thereby giving rise to the asymmetry of the mean separated region in the diffuser.


1965 ◽  
Vol 22 (2) ◽  
pp. 285-304 ◽  
Author(s):  
A. E. Perry ◽  
P. N. Joubert

The purpose of this paper is to provide some possible explantions for certain observed phenomena associated with the mean-velocity profile of a turbulent boundary layer which undergoes a rapid yawing. For the cases considered the yawing is caused by an obstruction attached to the wall upon which the boundary layer is developing. Only incompressible flow is considered.§1 of the paper is concerned with the outer region of the boundary layer and deals with a phenomenon observed by Johnston (1960) who described it with his triangular model for the polar plot of the velocity distribution. This was also observed by Hornung & Joubert (1963). It is shown here by a first-approximation analysis that such a behaviour is mainly a consequence of the geometry of the apparatus used. The analysis also indicates that, for these geometries, the outer part of the boundary-layer profile can be described by a single vector-similarity defect law rather than the vector ‘wall-wake’ model proposed by Coles (1956). The former model agrees well with the experimental results of Hornung & Joubert.In §2, the flow close to the wall is considered. Treating this region as an equilibrium layer and using similarity arguments, a three-dimensional version of the ‘law of the wall’ is derived. This relates the mean-velocity-vector distribution with the pressure-gradient vector and wall-shear-stress vector and explains how the profile skews near the wall. The theory is compared with Hornung & Joubert's experimental results. However at this stage the results are inconclusive because of the lack of a sufficient number of measured quantities.


Sign in / Sign up

Export Citation Format

Share Document