Three-dimensional structure and momentum transfer in a turbulent cylinder wake

1999 ◽  
Vol 394 ◽  
pp. 303-337 ◽  
Author(s):  
A. VERNET ◽  
G. A. KOPP ◽  
J. A. FERRÉ ◽  
FRANCESC GIRALT

Simultaneous velocity and temperature measurements were made with rakes of sensors that sliced a slightly heated turbulent wake in the spanwise direction, at different lateral positions 150 diameters downstream of the cylinder. A pattern recognition analysis of hotter-to-colder transitions was performed on temperature data measured at the mean velocity half-width. The velocity data from the different ‘slices’ was then conditionally averaged based on the identified temperature events. This procedure yielded the topology of the average three-dimensional large-scale structure which was visualized with iso-surfaces of negative values of the second eigenvector of [S2+Ω2]. The results indicate that the average structure of the velocity fluctuations (using a triple decomposition of the velocity field) is found to be a shear-aligned ring-shaped vortex. This vortex ring has strong outward lateral velocities in its symmetry plane which are like Grant's mixing jets. The mixing jet region extends outside the ring-like vortex and is bounded by two foci separated in the spanwise direction and an upstream saddle point. The two foci correspond to what has been previously identified in the literature as the double rollers.The ring vortex extracts energy from the mean flow by stretching in the mixing jet region just upstream of the ring boundary. The production of the small-scale (incoherent) turbulence by the coherent field and one-component energy dissipation rate occur just downstream of the saddle point within the mixing jet region. Incoherent turbulence energy is extracted from the mean flow just outside the mixing jet region, but within the core of the structure. These processes are highly three-dimensional with a spanwise extent equal to the mean velocity half-width.When a double decomposition is used, the coherent structure is found to be a tube-shaped vortex with a spanwise extent of about 2.5l0. The double roller motions are integral to this vortex in spite of its shape. Spatial averages of the coherent velocity field indicate that the mixing jet region causes a deficit of mean streamwise momentum, while the region outside the foci of the double rollers has a relatively small excess of streamwise momentum.

1997 ◽  
Vol 119 (1) ◽  
pp. 39-50 ◽  
Author(s):  
B. G. Wiedner ◽  
C. Camci

Three-dimensional measurements of the mean velocity field have been made in a square-cross-sectional, strongly curved, 90 deg turbulent duct flow. The mean radius to duct width ratio was 2.3. The study was performed as part of an overall investigation of the physics of endwall convective heat transfer. All three components of the velocity vector and the static and total pressure fields were measured using a five-hole probe at four duct cross sections: inlet, 0, 45, and 90 deg. Preliminary turbulence measurements using a single sensor hot wire at the inlet cross section were also obtained to provide streamwise fluctuation levels through the boundary layer. The endwall heat transfer coefficient distribution was determined using a steady-state measurement technique and liquid crystal thermography. A high-resolution heat transfer map of the endwall surface from far upstream of the curve through the 90 deg cross section is presented. The three-dimensional velocity field measurements indicate that a highly symmetric, strong secondary flow develops in the duct with a significant transfer of streamwise momentum to the transverse directions. The cross-stream vorticity components within the measurement plane were estimated using the five-hole probe data and an inviscid from of the incompressible momentum equation. The development of the total and static pressure fields, the three-dimensional mean velocity field, and all three components of the vorticity field are discussed. The endwall heat transfer distribution is interpreted with respect to the measured mean flow quantities.


1969 ◽  
Vol 36 (4) ◽  
pp. 785-803 ◽  
Author(s):  
Francis P. Bretherton

A train of internal gravity waves in a stratified liquid exerts a stress on the liquid and induces changes in the mean motion of second order in the wave amplitude. In those circumstances in which the concept of a slowly varying quasi-sinusoidal wave train is consistent, the mean velocity is almost horizontal and is determined to a first approximation irrespective of the vertical forces exerted by the waves. The sum of the mean flow kinetic energy and the wave energy is then conserved. The circulation around a horizontal circuit moving with the mean velocity is increased in the presence of waves according to a simple formula. The flow pattern is obtained around two- and three-dimensional wave packets propagating into a liquid at rest and the results are generalized for any basic state of motion in which the internal Froude number is small. Momentum can be associated with a wave packet equal to the horizontal wave-number times the wave energy divided by the intrinsic frequency.


1982 ◽  
Vol 119 ◽  
pp. 121-153 ◽  
Author(s):  
Udo R. Müller

An experimental study of a steady, incompressible, three-dimensional turbulent boundary layer approaching separation is reported. The flow field external to the boundary layer was deflected laterally by turning vanes so that streamwise flow deceleration occurred simultaneous with cross-flow acceleration. At 21 stations profiles of the mean-velocity components and of the six Reynolds stresses were measured with single- and X-hot-wire probes, which were rotatable around their longitudinal axes. The calibration of the hot wires with respect to magnitude and direction of the velocity vector as well as the method of evaluating the Reynolds stresses from the measured data are described in a separate paper (Müller 1982, hereinafter referred to as II). At each measuring station the wall shear stress was inferred from a Preston-tube measurement as well as from a Clauser chart. With the measured profiles of the mean velocities and of the Reynolds stresses several assumptions used for turbulence modelling were checked for their validity in this flow. For example, eddy viscosities for both tangential directions and the corresponding mixing lengths as well as the ratio of resultant turbulent shear stress to turbulent kinetic energy were derived from the data.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 237
Author(s):  
Ming Chen ◽  
Haijin Huang ◽  
Xingxing Zhang ◽  
Senpeng Lv ◽  
Rengmin Li

Three-dimensional (3D) confined wall jets have various engineering applications related to efficient energy dissipation. This paper presents experimental measurements of mean flow development for a 3D rectangular wall jet confined by a vertical baffle with a fixed distance (400 mm) from its surface to the nozzle. Experiments were performed at three different Reynolds numbers of 8333, 10,000 and 11,666 based on jet exit velocity and square root of jet exit area (named as B), with water depth of 100 mm. Detailed measurements of current jet were taken using a particle image velocimetry technique. The results indicate that the confined jet seems to behave like an undisturbed jet until 16B downstream. Beyond this position, however, the mean flow development starts to be gradually affected by the baffle confinement. The baffle increases the decay and spreading of the mean flow from 16B to 23B. The decay rate of 1.11 as well as vertical and lateral growth rates of 0.04 and 0.19, respectively, were obtained for the present study, and also fell well within the range of values which correspond to the results in the radial decay region for the unconfined case. In addition, the measurements of the velocity profiles, spreading rates and velocity decay were also found to be independent of Reynolds number. Therefore, the flow field in this region appears to have fully developed at least 4B earlier than the unconfined case. Further downstream (after 23B), the confinement becomes more pronounced. The vertical spreading of current jet shows a distinct increase, while the lateral growth was found to be decreased significantly. It can be also observed that the maximum mean velocity decreases sharply close to the baffle.


Ocean Science ◽  
2010 ◽  
Vol 6 (3) ◽  
pp. 679-693 ◽  
Author(s):  
V. M. Canuto ◽  
M. S. Dubovikov

Abstract. Several studies have shown that sub-mesoscales (SM ~1 km horizontal scale) play an important role in mixed layer dynamics. In particular, high resolution simulations have shown that in the case of strong down-front wind, the re-stratification induced by the SM is of the same order of the de-stratification induced by small scale turbulence, as well as of that induced by the Ekman velocity. These studies have further concluded that it has become necessary to include SM in ocean global circulation models (OGCMs), especially those used in climate studies. The goal of our work is to derive and assess an analytic parameterization of the vertical tracer flux under baroclinic instabilities and wind of arbitrary directions and strength. To achieve this goal, we have divided the problem into two parts: first, in this work we derive and assess a parameterization of the SM vertical flux of an arbitrary tracer for ocean codes that resolve mesoscales, M, but not sub-mesoscales, SM. In Part 2, presented elsewhere, we have used the results of this work to derive a parameterization of SM fluxes for ocean codes that do not resolve either M or SM. To carry out the first part of our work, we solve the SM dynamic equations including the non-linear terms for which we employ a closure developed and assessed in previous work. We present a detailed analysis for down-front and up-front winds with the following results: (a) down-front wind (blowing in the direction of the surface geostrophic velocity) is the most favorable condition for generating vigorous SM eddies; the de-stratifying effect of the mean flow and re-stratifying effect of SM almost cancel each other out, (b) in the up-front wind case (blowing in the direction opposite to the surface geostrophic velocity), strong winds prevents the SM generation while weak winds hinder the process but the eddies amplify the re-stratifying effect of the mean velocity, (c) wind orthogonal to the geostrophic velocity. In this case, which was not considered in numerical simulations, we show that when the wind direction coincides with that of the horizontal buoyancy gradient, SM eddies are generated and their re-stratifying effect partly cancels the de-stratifying effect of the mean velocity. The case when wind direction is opposite to that of the horizontal buoyancy gradient, is analogous to the case of up-front winds. In conclusion, the new multifaceted implications on the mixed layer stratification caused by the interplay of both strength and directions of the wind in relation to the buoyancy gradient disclosed by high resolution simulations have been reproduced by the present model. The present results can be used in OGCMs that resolve M but not SM.


2000 ◽  
Vol 402 ◽  
pp. 349-378 ◽  
Author(s):  
TAKESHI MIYAZAKI ◽  
JULIAN C. R. HUNT

The structure of initially isotropic homogeneous turbulence interacting with a columnar vortex (with circulation Γ and radius σ), idealized both as a solid cylinder and a hollow core model is analysed using the inhomogeneous form of linear rapid distortion theory (RDT), for flows where the r.m.s. turbulence velocity u0 is small compared with Γ/σ. The turbulent eddies with scale Γ are distorted by the mean velocity gradient and also, over a distance Γ from the surface of the vortex, by their direct impingement onto it, whether it is solid or hollow. The distortion of the azimuthal component of turbulent vorticity by the differential rotation in the mean flow around the columnar vortex causes the mean-square radial velocity away from the cylinder to increase as (Γt/2πr2)2 (Γx/r)u20, when (r − σ) > Γx, but on the surface of the vortices ((r − σ) < Γx) where 〈u2r〉 is reduced, 〈u2z〉 increases to the same order, while the other components do not grow. Statistically, while the vorticity field remains asymmetric, the velocity field of small-scale eddies near the vortex core rapidly becomes axisymmetric, within a period of two or three revolutions of the columnar vortex. Calculation of the distortion of small-scale initially random velocity fields shows how the turbulent eddies, as they are wrapped around the columnar vortex, become like vortex rings, with similar properties to those computed by Melander & Hussain (1993) using a fully nonlinear direct numerical simulation. A mechanism is proposed for how interactions between the external turbulence and the columnar vortex can lead to non-axisymmetric vortex waves being excited on the vortex and damped fluctuations in its interior. If the columnar vortex is not significantly distorted by these linear effects, estimates are made of how nonlinear effects lead to the formation of axisymmetric turbulent vortices which move as result of their image vorticity (in addition to the self-induction velocity) at a velocity of order u0tΓ/σ2 parallel to the vortex. Even when the circulation (γ) of the turbulent vortices is a small fraction of Γ, they can excite self-destructive displacements through resonance on a time scale σ/u0.


2001 ◽  
Vol 426 ◽  
pp. 297-326 ◽  
Author(s):  
MAGNE LYGREN ◽  
HELGE I. ANDERSSON

Turbulent flow between a rotating and a stationary disk is studied. Besides its fundamental importance as a three-dimensional prototype flow, such flow fields are frequently encountered in rotor–stator configurations in turbomachinery applications. A direct numerical simulation is therefore performed by integrating the time-dependent Navier–Stokes equations until a statistically steady state is reached and with the aim of providing both long-time statistics and an exposition of coherent structures obtained by conditional sampling. The simulated flow has local Reynolds number r2ω/v = 4 × 105 and local gap ratio s/r = 0.02, where ω is the angular velocity of the rotating disk, r the radial distance from the axis of rotation, v the kinematic viscosity of the fluid, and s the gap width.The three components of the mean velocity vector and the six independent Reynolds stresses are compared with experimental measurements in a rotor–stator flow configuration. In the numerically generated flow field, the structural parameter a1 (i.e. the ratio of the magnitude of the shear stress vector to twice the mean turbulent kinetic energy) is lower near the two disks than in two-dimensional boundary layers. This characteristic feature is typical for three-dimensional boundary layers, and so are the misalignment between the shear stress vector and the mean velocity gradient vector, although the degree of misalignment turns out to be smaller in the present flow than in unsteady three-dimensional boundary layer flow. It is also observed that the wall friction at the rotating disk is substantially higher than at the stationary disk.Coherent structures near the disks are identified by means of the λ2 vortex criterion in order to provide sufficient information to resolve a controversy regarding the roles played by sweeps and ejections in shear stress production. An ensemble average of the detected structures reveals that the coherent structures in the rotor–stator flow are similar to the ones found in two-dimensional flows. It is shown, however, that the three-dimensionality of the mean flow reduces the inter-vortical alignment and the tendency of structures of opposite sense of rotation to overlap. The coherent structures near the disks generate weaker sweeps (i.e. quadrant 4 events) than structures in conventional two-dimensional boundary layers. This reduction in the quadrant 4 contribution from the coherent structures is believed to explain the reduced efficiency of the mean flow in producing Reynolds shear stress.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Arindam Singha ◽  
A.-M. Shinneeb ◽  
Ram Balachandar

This paper reports particle-image velocimetry measurements of instantaneous velocity fields in the wake of a sharp-edged bluff body immersed vertically in a shallow smooth open channel flow. The maximum flow velocity was 0.19 m/s and the Reynolds number based on the water depth was 18,270. The purpose of the present study is to show the vertical variation of the velocity field in the near region of a shallow wake. Measurements of the flow field in the vertical central plane and in the horizontal near-bed, mid-depth, and near-surface planes were taken. Then, the mean flow quantities such as the mean velocity, turbulence intensity, and Reynolds stress fields were investigated. In addition, the proper orthogonal decomposition technique was used to reconstruct the velocity fields to investigate the energetic vortical structures. The results showed that the largest recirculation zone in the mean velocity fields occurred in the mid-depth velocity field, while the smallest one occurred near the bed. Also, the fluid was entrained from the sides toward the wake central plane in the three horizontal velocity fields but with different rates. This behavior was attributed to the existence of quasi-streamwise vortices near the boundaries. In addition, patterns of ejection and sweep events near the free surface similar to the features commonly observed near the wall-bounded flows were observed.


2011 ◽  
Vol 133 (5) ◽  
Author(s):  
M. Agelin-Chaab ◽  
M. F. Tachie

Three-dimensional turbulent offset jets were investigated using a particle image velocimetry technique. Three jet exit Reynolds numbers, Rej = 5000, 10,000, and 20,000, and four offset heights, h/d = 0.5, 1.0, 2.0, and 4.0, were studied. The mean flow and turbulence statistics were studied over larger downstream distances than in previous studies. The decay and spread rates were found to be nearly independent of Reynolds number and offset height at certain exit diameters (x = 73d) downstream and h/d ≤ 2. The decay rates of 1.18 ± 0.03 and spread rates of 0.055 ± 0.001 and 0.250 ± 0.005 in the wall-normal and lateral directions were obtained, respectively. The reattachment lengths are also independent of Rej but increase with offset height. The locations of the maximum mean velocities increased linearly with streamwise distance in the self-similar region. It was observed that profiles of the mean velocities, turbulence intensities, and Reynolds shears stresses are nearly independent of Rej and h/d far downstream. The triple products in the symmetry plane indicated turbulence transport from the outer region of the jet towards the wall region.


2011 ◽  
Vol 674 ◽  
pp. 522-577 ◽  
Author(s):  
DJAMEL LAKEHAL ◽  
PETAR LIOVIC

Large-eddy and interface simulation using an interface tracking-based multi-fluid flow solver is conducted to investigate the breaking of steep water waves on a beach of constant bed slope. The present investigation focuses mainly on the ‘weak plunger’ breaking wave type and provides a detailed analysis of the two-way interaction between the mean fluid flow and the sub-modal motions, encompassing wave dynamics and turbulence. The flow is analysed from two points of views: mean to sub-modal exchange, and wave to turbulence interaction within the sub-modal range. Wave growth and propagation are due to energy transfer from the mean flow to the waves, and transport of mean momentum by these waves. The vigorous downwelling–upwelling patterns developing at the head and tail of each breaker are shown to generate both negative- and positive-signed energy exchange contributions in the thin sublayer underneath the water surface. The details of these exchange mechanisms are thoroughly discussed in this paper, together with the interplay between three-dimensional small-scale breaking associated with turbulence and the dominant two-dimensional wave motion. A conditional zonal analysis is proposed for the first time to understand the transient mechanisms of turbulent kinetic energy production, decay, diffusion and transport and their dependence and/or impact on surface wrinkling over the entire breaking process. The simulations provide a thorough picture of air–liquid coherent structures that develop over the breaking process, and link them to the transient mechanisms responsible for their local incidence.


Sign in / Sign up

Export Citation Format

Share Document