Performance Evaluation of Solid Oxide Fuel Cell Engines Integrated With Single/Dual-Spool Turbochargers

Author(s):  
So-Ryeok Oh ◽  
Jing Sun ◽  
Herb Dobbs ◽  
Joel King

This study investigates the performance and operating characteristics of 5kW-class solid oxide fuel cell and gas turbine (SOFC/GT) hybrid systems for two different configurations, namely single- and dual- spool gas turbines. Both single and dual spool turbo-chargers are widely used in the gas turbine industry. Even though their operation is based on the same physical principles, their performance characteristics and operation parameters vary considerably due to different designs. The implications of the differences on the performance of the hybrid SOFC/GT have not been discussed in literature, and will be the topic of this paper. Operating envelops of single and dual shaft systems are identified and compared. Performance in terms of system efficiency and load following is analyzed. Sensitivities of key variables such as power, SOFC temperature, and GT shaft speed to the control inputs (namely, fuel flow, SOFC current, generator load) are characterized, all in an attempt to gain insights on the design implication for the single and dual shaft SOFC/GT systems. Dynamic analysis are also performed for part load operation and load transitions, which shed lights for the development of safe and optimal control strategies.

Author(s):  
Luca Mantelli ◽  
Mario L. Ferrari ◽  
Alberto Traverso

Abstract Pressurized solid oxide fuel cell systems are one of the most promising technologies to achieve high efficiencies and reduce pollutant emissions. This study focuses on an innovative layout, based on an automotive turbocharger, which improves cost effectiveness at small size (<100 kW), despite reducing slightly the efficiency compared to micro gas turbines based layouts. This turbocharged system poses two main challenges. On one side, the absence of an electrical generator does not allow the direct control of the rotational speed. On the other side, the large volume of the fuel cell stack between compressor and turbine alters the dynamic behavior of the turbocharger during transients, increasing the risk of compressor surge. The pressure oscillations associated with surge are particularly detrimental for the system and could damage the materials of the fuel cells. The aim of this paper is to investigate different techniques to drive the operative point of the compressor far from the surge condition when needed, increasing its reliability. Using a system dynamic model, developed with the TRANSEO tool by TPG, the effect of different anti-surge solutions is simulated: (i) water spray at compressor inlet, (ii) compressor fogging, (iii) air bleed, (iv) recirculation and (iv) ejector-aided recirculation at compressor intake. The system is simulated with two different control strategies, i.e. constant fuel mass flow and constant turbine inlet temperature. Different solutions are evaluated based on surge margin behavior, both in the short and long terms, but also monitoring other relevant physical quantities of the system.


Author(s):  
Georgia C. Karvountzi ◽  
Clifford M. Price ◽  
Paul F. Duby

A solid oxide fuel cell (SOFC) integrated in a hybrid system with a gas turbine can achieve lower heating value (LHV) power of efficiencies of about 70%. Given the high operating temperature of the SOFC, it produces high grade heat, and a hybrid system designed for cogeneration may achieve total LHV efficiencies of 78% of 80% without post combustion and 85%–88% with post combustion. The present paper illustrates the optimum integration of a tubular solid oxide fuel cell in a cogeneration cycle with a multiple pressure heat recovery steam generator (HRSG) and a back pressure steam turbine. We considered fuel cells of 7.5 MW, 9 MW, 15 MW, 15 MW, 18 MW, 22.5 MW and 27 MW by scaling up published data for a 1.2 MW tubular solid oxide fuel cell. The operating pressures were 3 and 9atm. We used GateCycle™ heat balance software by GE Enter Software, LLC, to design a 20–40 MW high efficiency cogeneration plant. We performed a calculation of the heat balance of the fuel cell stack in Microsoft® Excel and then we imported the results into GateCycle™. We developed curves showing LHV “electric” efficiency versus power for different ratios of “fuel cell-to-gas turbine size”. Pressurization has a positive impact on the fuel cell polarization curve leading to higher power output. The gain in electric power, however, is offset by the additional power requirement of the compressor at higher pressures. Our analysis shows that an optimum pressure of about 9 atmospheres results in an overall hybrid system power efficiency of about 70% and a LHV “cogeneration” efficiency of about 80%. In conclusion, high efficiencies are obtained by optimization of a hybrid system consisting of pressurized high temperature fuel cells with gas turbines and a steam turbine.


Sign in / Sign up

Export Citation Format

Share Document