Flow Boiling Characteristics for R1234ze(E) in 1.0 and 2.2 mm Circular Channels

2011 ◽  
Vol 134 (2) ◽  
Author(s):  
Cristiano Bigonha Tibiriçá ◽  
Gherhardt Ribatski ◽  
John Richard Thome

Experimental flow boiling heat transfer results are presented for horizontal 1.0 and 2.2 mm I.D. (internal diameter) stainless steel tubes for tests with R1234ze(E), a new refrigerant developed as a substitute for R134a with a much lower global warming potential (GWP). The experiments were performed for these two tube diameters in order to investigate a possible transition between macro and microscale flow boiling behavior. The experimental campaign includes mass velocities ranging from 50 to 1500 kg/m2 s, heat fluxes from 10 to 300 kW/m2, exit saturation temperatures of 25, 31 and 35 °C, vapor qualities from 0.05 to 0.99 and heated lengths of 180 mm and 361 mm. Flow pattern characterization was performed using high speed videos. Heat transfer coefficient, critical heat flux and flow pattern data were obtained. R1234ze(E) demonstrated similar thermal performance to R134a data when running at similar conditions.

Author(s):  
Cristiano Bigonha Tibiric¸a´ ◽  
Gherhardt Ribatski ◽  
John Richard Thome

Experimental flow boiling heat transfer results are presented for horizontal 1.0 and 2.2 mm I.D. (internal diameter) stainless steel tubes for tests with R1234ze, a new refrigerant developed as a substitute for R134a with a much lower GWP (Global Warming Potential). These two tube diameters were chosen due the necessity to a better investigation the macro to microchannel transition boundary. The experimental campaign includes mass velocities ranging from 50 to 1500 kg m−2s−1, heat fluxes from 10 to 300 kW m−2, exit saturation temperatures of 25, 31 and 35 °C, vapor qualities from 0.05 to 0.99 and heated lengths of 180 mm and 361 mm. Flow pattern characterization was performed using high-speed videos. Data for heat transfer coefficients, critical heat fluxes and flow pattern transitions were obtained. R1234ze demonstrated similar thermal performance to R134a data when running at similar conditions. For critical heat flux the correlation of Katto and Ohno (1984) best predicted the database with a mean absolute error of 6.3%. For the heat transfer coefficients, the Thome et al. (2004) three-zone model predicted the data for slug flow with 15.9% and Saitoh et al. (2007) predicted data for other flow regimes with mean absolute error of 19.4%.


2013 ◽  
Vol 135 (8) ◽  
Author(s):  
Rashid Ali ◽  
Björn Palm ◽  
Claudi Martin-Callizo ◽  
Mohammad H. Maqbool

This paper presents the visualization results obtained for an experimental study of R134a during flow boiling in a horizontal microchannel. The microchannel used was a fused silica tube having an internal diameter of 781 μm, a heated length of 191 mm, and was coated with a thin, transparent, and electrically conductive layer of indium-tin-oxide (ITO) on the outer surface. The operating parameters during the experiments were: mass flux 100–400 kg/m2 s, heat flux 5–45 kW/m2, saturation temperatures 25 and 30 °C, corresponding to saturation pressures of 6.65 bar and 7.70 bar and reduced pressures of 0.163 and 0.189, respectively. A high speed camera with a close up lens was used to capture the flow patterns that evolved along the channel. Flow pattern maps are presented in terms of the superficial gas and liquid velocity and in terms of the Reynolds number and vapor quality plots. The results are compared with some flow pattern maps for conventional and micro scale channels available in the literature. Rigorous boiling and increased coalescence rates were observed with an increase in the heat flux.


2009 ◽  
Vol 131 (9) ◽  
Author(s):  
Chang Yong Park ◽  
Pega Hrnjak

Abstract C O 2 flow boiling heat transfer coefficients and pressure drop in a 3.5mm horizontal smooth tube are presented. Also, flow patterns were visualized and studied at adiabatic conditions in a 3mm glass tube located immediately after a heat transfer section. Heat was applied by a secondary fluid through two brass half cylinders to the test section tubes. This research was performed at evaporation temperatures of −15°C and −30°C, mass fluxes of 200kg∕m2s and 400kg∕m2s, and heat flux from 5kW∕m2 to 15kW∕m2 for vapor qualities ranging from 0.1 to 0.8. The CO2 heat transfer coefficients indicated the nucleate boiling dominant heat transfer characteristics such as the strong dependence on heat fluxes at a mass flux of 200kg∕m2s. However, enhanced convective boiling contribution was observed at 400kg∕m2s. Surface conditions for two different tubes were investigated with a profilometer, atomic force microscope, and scanning electron microscope images, and their possible effects on heat transfer are discussed. Pressure drop, measured at adiabatic conditions, increased with the increase of mass flux and quality, and with the decrease of evaporation temperature. The measured heat transfer coefficients and pressure drop were compared with general correlations. Some of these correlations showed relatively good agreements with measured values. Visualized flow patterns were compared with two flow pattern maps and the comparison showed that the flow pattern maps need improvement in the transition regions from intermittent to annular flow.


Author(s):  
T. Netz ◽  
R. Shalem ◽  
J. Aharon ◽  
G. Ziskind ◽  
R. Letan

In the present study, incipient flow boiling of water is studied experimentally in a square-cross-section vertical channel. Water, preheated to 60–80 degrees Celsius, flows upwards. The channel has an electrically heated wall, where the heat fluxes can be as high as above one megawatt per square meter. The experiment is repeated for different water flow rates, and the maximum Reynolds number reached in the present study is 27,300. Boiling is observed and recorded using a high-speed digital video camera. The temperature field on the heated surface is measured with an infrared camera and a software is used to obtain quantitative temperature data. Thus, the recorded boiling images are analyzed in conjunction with the detailed temperature field. The dependence of incipient boiling on the flow and heat transfer parameters is established. For a flat wall, the results for various velocities and subcooling conditions agree well with the existing literature. Furthermore, three different wavy heated surfaces are explored, having the same pitch of 4mm but different amplitudes of 0.25mm, 0.5mm and 0.75mm. The effect of surface waviness on single-phase heat transfer and boiling incipience is shown. The differences in boiling incipience on various surfaces are elucidated, and the effect of wave amplitude on the results is discussed.


Author(s):  
Junye Li ◽  
Kan Zhou ◽  
Wei Li

Abstract An experimental investigation of subcooled flow boiling in a large width-to-height-ratio, one-sided heating rectangular mini-gap channel was conducted with deionized water as the working fluid. The super-hydrophobicity micro-porous structured copper surface was utilized in the experiments. High speed flow visualization was conducted to illustrate the effects of heat flux and mass rate on the heat transfer coefficient and flow pattern on the surfaces. The mass fluxes were in the range of 200–500 kg/m2s, the wall heat fluxes were spanned from 40–400 kW/m2. With increments of imposed heat flux, the slopes of boiling curves for superhydrophobic micro-porous copper surfaces increased rapidly, indicating the Onset of Nucleate Boiling. Heat transfer characteristics were discussed with variation of heat fluxes and mass fluxes, the trends of which were analyzed with the aid of high speed flow visualization.


Author(s):  
Giovanni A. Longo ◽  
Simone Mancin ◽  
Giulia Righetti ◽  
Claudio Zilio

AbstractR134a was recognized as probably one of the most important refrigerants of the two past decades. Among the proposed alternative fluids, there are certainly isobutane (R600a) and R152a. This article presents about 200 new heat transfer coefficient and pressure drop data obtained during flow boiling of R152a and R600a inside a smooth copper tube having an internal diameter of 4 mm. Three saturation temperatures were considered for each refrigerant, from 5 °C to 20 °C. Furthermore, for each temperature studied, the heat flux was varied between 15 and 30 kW m−2 and the refrigerant mass flux from 100 to 400 kg m−2 s−1. After presenting the new data, a critical comparison was proposed between the performance of these refrigerants and R134a. Finally, some classic correlations available in the literature have been implemented. The deviations between the calculated and experimental values were reported and commented.


Sign in / Sign up

Export Citation Format

Share Document