Submerged Jet Impingement Boiling of Water Under Subatmospheric Conditions

2011 ◽  
Vol 134 (2) ◽  
Author(s):  
Ruander Cardenas ◽  
Vinod Narayanan

An experimental study of jet impingement boiling is presented for water under saturated and subcooled conditions. Unique to this study is the documentation of boiling curves of a submerged water jet under subatmospheric conditions. Data are reported at a fixed nondimensional nozzle-to-surface distance of H/dj = 6 and for a fixed surface-to-nozzle diameter ratio, dsurf/dj, of 23.8. Saturated jet impingement experiments are performed at three subatmospheric pool pressures of 0.176 bar, 0.276 bar, and 0.478 bar with corresponding saturation temperatures of 57.3 °C, 67.2 °C, and 80.2 °C. At each pressure, jet impingement boiling at varying Reynolds numbers are characterized and compared with pool boiling heat transfer. The effect of surface roughness and fluid subcooling is studied at the lowest pressure of 0.176 bar. Boiling curves indicate a strong dependence of heat flux on jet Reynolds number in the partially developed nucleate boiling region but only a weak dependence in the fully developed nucleate boiling region. At a fixed wall superheat, fluid subcooling is found to shift the boiling curve to the left thereby enhancing heat transfer performance. Critical heat flux is found to increase with increases in pressure, surface roughness, and Reynolds number.

2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Orkodip Mookherjee ◽  
Shantanu Pramanik ◽  
Uttam Kumar Kar

Abstract The thermal and fluid dynamic behavior of a confined two-dimensional steady laminar nanofluid jet impinging on a horizontal plate embedded with five discrete heating elements subjected to a constant surface heat flux has been studied for a range of Reynolds number (Re) from 100 to 400 with Prandtl number, Pr = 6.96, of the base fluid. Variation of inlet Reynolds number produces a significant change of the flow and heat transfer characteristics in the domain. Increasing the nanoparticle concentration (ϕ) from 0% to 4% exhibits discernible change in equivalent Re and Pr caused by the modification of dynamic viscosity, effective density, thermal conductivity, and specific heat of the base fluid. Considerable improvement in heat transfer from the heaters is observed as the maximum temperature of the impingement wall is diminished from 0.95 to 0.55 by increasing Re from 100 to 400; however, the result of increasing ϕ on cooling of the heaters is less appreciable. Self-similar behavior has been depicted by cross-stream variation of temperature and streamwise heat flux in the developed region along the impingement wall up to Re = 300 for ϕ=0% to 4%. But the spread of the respective quantities shows strong dependence on ϕ at Re = 300 with sudden attenuation in magnitude in the developed region of flow. Substantial influence of Re is evident on Eckert number and pumping power. Eckert number decreases, whereas pumping power increases with an increase in Re, and the respective variations exhibit correspondence with power fit correlations.


Author(s):  
Preeti Mani ◽  
Ruander Cardenas ◽  
Vinod Narayanan

Submerged jet impingement boiling has the potential to enhance pool boiling heat transfer rates. In most practical situations, the surface could consist of multiple heat sources that dissipate heat at different rates resulting in a surface heat flux that is non-uniform. This paper discusses the effect of submerged jet impingement on the wall temperature characteristics and heat transfer for a non-uniform heat flux. A mini-jet is caused to impinge on a polished silicon surface from a nozzle having an inner diameter of 1.16 mm. A 25.4 mm diameter thin-film circular serpentine heater, deposited on the bottom of the silicon wafer, is used to heat the surface. Deionized degassed water is used as the working fluid and the jet and pool are subcooled by 20°C. Voltage drop between sensors leads drawn from the serpentine heater are used to identify boiling events. Heater surface temperatures are determined using infrared thermography. High-speed movies of the boiling front are recorded and used to interpret the surface temperature contours. Local heat transfer coefficients indicate significant enhancement upto radial locations of 2.6 jet diameters for a Reynolds number of 2580 and upto 6 jet diameters for a Reynolds number of 5161.


Author(s):  
S. Abishek ◽  
R. Narayanaswamy ◽  
V. Narayanan

Jet impingement boiling heat transfer is a potential technique for the removal of very high heat fluxes concentrated at discrete locations, such as in power electronic components. In the present research, the effect of heater-nozzle size ratio (in the range 0.5 ≤ wH/wN ≤ 11) on jet impingement boiling is studied numerically. A steady-state submerged and confined subcooled jet impingement boiling of de-ionized and degassed water (at atmospheric pressure) on a polished isothermal heater surface is considered for a jet Reynolds number of Rew = 2500 and 20°C subcooling. The RPI wall boiling closure is used for the partition of heat flux on the surface into liquid phase, evaporation and quenching. Turbulence is modeled using the RNG-k-ε mixture model. The flow and heat transfer is simulated by considering the liquid and vapor phase to be an Euler-Euler interpenetrating continua; the interfacial momentum transfer is modelled using appropriate correlations for interphase momentum, heat and mass transfers. Validation of the numerical approach was performed by comparison of the present results with experimental data from literature for axisymmetric as well as slot jets. It was found that for any prescribed wall superheat, the heat flux was consistently larger for relatively smaller heaters (or smaller wH/wN). However, for any given wall superheat, the heat flux stagnated at an apparent asymptotic limit with increase in heater size, and this asymptotic limit was larger for larger wall superheats. It was also found that the quenching heat flux was the largest contributor to the total heat flux at relatively large degrees of superheat irrespective of heater-nozzle size ratio. A correlation is also developed for the heat flux as a function of the heater size and degree of superheat, for a given set of other controlling parameters.


Author(s):  
Muhamad Zuhairi Sulaiman ◽  
Masahiro Takamura ◽  
Kazuki Nakahashi ◽  
Tomio Okawa

Boiling heat transfer (BHT) and critical heat flux (CHF) performance were experimentally studied for saturated pool boiling of water-based nanofluids. In present experimental works, copper heaters of 20 mm diameter with titanium-oxide (TiO2) nanocoated surface were produced in pool boiling of nanofluid. Experiments were performed in both upward and downward facing nanofluid coated heater surface. TiO2 nanoparticle was used with concentration ranging from 0.004 until 0.4 kg/m3 and boiling time of tb = 1, 3, 10, 20, 40, and 60 mins. Distilled water was used to observed BHT and CHF performance of different nanofluids boiling time and concentration configurations. Nucleate boiling heat transfer observed to deteriorate in upward facing heater, however; in contrast effect of enhancement for downward. Maximum enhancements of CHF for upward- and downward-facing heater are 2.1 and 1.9 times, respectively. Reduction of mean contact angle demonstrate enhancement on the critical heat flux for both upward-facing and downward-facing heater configuration. However, nucleate boiling heat transfer shows inconsistency in similar concentration with sequence of boiling time. For both downward- and upward-facing nanocoated heater's BHT and CHF, the optimum configuration denotes by C = 400 kg/m3 with tb = 1 min which shows the best increment of boiling curve trend with lowest wall superheat ΔT = 25 K and critical heat flux enhancement of 2.02 times.


Author(s):  
Jianchang Huang ◽  
Thomas J. Sheer ◽  
Michael Bailey-McEwan

The heat transfer and pressure drop characteristics of plate heat exchangers were measured, when used as refrigerant liquid over-feed evaporators. The three units all had 24 plates but with different chevron-angle combinations of 28°/28°, 28°/60°, and 60°/60°. R134a flowing upwards was used as the refrigerant, in a counter-current arrangement with water flowing on the other side. Heat transfer and pressure drop measurements were made over a range of mass flux, heat flux and corresponding outlet vapour fractions. The effect of system pressure on the evaporator performance was not evaluated due to the small range of evaporating temperature. Experimental data were reduced to obtain the refrigerant-side heat transfer coefficient and frictional pressure drop. The results for heat transfer showed a strong dependence on heat flux and weak dependence on mass flux and vapour fraction. Furthermore, the chevron angle had a small influence on heat transfer but a large influence on frictional pressure drops. Along with observations that were obtained previously on large ammonia and R12 plate evaporators, it is concluded that the dominating heat transfer mechanism in this type of evaporator is nucleate-boiling rather than forced convection. For the two-phase friction factor, various established methods were evaluated; the homogeneous treatment gives good agreement.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012024
Author(s):  
V.V. Lemanov ◽  
M.A. Pakhomov ◽  
V.I. Terekhov ◽  
Z. Travnicek

Abstract An unsteady local heat transfer in an air synthetic non-steady-state jet impingement onto a flat plate with a variation of the Reynolds number, nozzle-to-plate distance and pulses frequency is experimentally and numerically studied. Measurements of the averaged and pulsating heat transfer at the stagnation point are conducted using a heat flux sensor. The axisymmetric URANS method and the Reynolds stress model are used for numerical simulations. For local values of heat transfer, zones with the maximum instantaneous value of heat flux and heat transfer coefficient are identified. The heat transfer increases at relatively low nozzle-to-plate distances (H/d ≤ 4). The heat transfer decreases at high distance from the orifice and target surface. An increase in the Reynolds number causes reduction of heat transfer.


Author(s):  
Niranjan Murthy ◽  
B.K. Naveenkumar

An experimental study was carried out to study the effect of multiple jet impingement on a virtual electronic component using water and air as working fluids. It consists of an electrically heated test plate of size 20mm×20mm. Heat flux is varied between 25 to 250W/cm2 was dissipated using 0.25 and 0.5mm diameter jets placed in a 7×7 array with a pitch of 3mm. The difference in temperature between test surface and fluid inlet is within 30 degC for water jets and within 75 degC for air jet experiments. Experiments were conducted by changing the heat flux, flow rate and distance between the test surface and jet exit and [iv] horizontal and vertical positioning of the jets. It was found that heat flux, jet diameter and Reynolds number are important factors in determining the heat transfer. The effects of distance between test surface and jet exit [Z] and positioning of the jets were insignificant. Though the multiple jet impingement heat transfer problem is complex, the heat transfer results could be correlated using a simple relationship in the form of Nu = AqmRen. The constant (m) which indicates the effect of heat flux has the value of 0.8 and 0.9 depending upon the jet diameter and the coolant. The constant (n) which indicates the influence of Reynolds number has the value of 0.25 for both water and air jets. The value of constant (A) is different for water and air jets. The correlation developed in this research work can be effectively used to design multiple water and air jet cooling system for electronic components.


2005 ◽  
Vol 128 (7) ◽  
pp. 726-729 ◽  
Author(s):  
Zhenhua Liu ◽  
Yuhao Qiu

The nucleate boiling heat transfer characteristics of a round water jet impingement in a flat stagnation zone on the superhydrophilic surface were experimentally investigated. The superhydrophilic heat transfer surface was formed by a TiO2 coating process. The experimental results were compared with those on the common metal surface. In particular, the quantificational effects of the flow conditions, heating conditions, and the coating methods on the critical heat flux (CHF) were systemically investigated. The experimental data showed that the nucleate boiling heat transfer characteristics on the superhydrophilic surface are significantly different from those on the common metal surface. The CHF of boiling on the superhydrophilic surface is greatly increased by decreasing of the solid-liquid contact angle.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3893
Author(s):  
Mohd Danish ◽  
Mohammed K. Al Mesfer ◽  
Khursheed B. Ansari ◽  
Mudassir Hasan ◽  
Abdelfattah Amari ◽  
...  

In the current work, the heat flux in nucleate pool boiling has been predicted using the macrolayer and latent heat evaporation model. The wall superheat (ΔT) and macrolayer thickness (δ) are the parameters considered for predicting the heat flux. The influence of operating parameters on instantaneous conduction heat flux and average heat flux across the macrolayer are investigated. A comparison of the findings of current model with Bhat’s decreasing macrolayer model revealed a close agreement under the nucleate pool boiling condition at high heat flux. It is suggested that conduction heat transfer strongly rely on macrolayer thickness and wall superheat. The wall superheat and macrolayer thickness is found to significantly contribute to conduction heat transfer. The predicted results closely agree with the findings of Bhat’s decreasing macrolayer model for higher values of wall superheat signifying the nucleate boiling. The predicted results of the proposed model and Bhat’s existing model are validated by the experimental data. The findings also endorse the claim that predominant mode of heat transfer from heater surface to boiling liquid is the conduction across the macrolayer at the significantly high heat flux region of nucleate boiling.


Sign in / Sign up

Export Citation Format

Share Document