Study of Near-Stall Flow Behavior in a Modern Transonic Fan With Compound Sweep

2012 ◽  
Vol 134 (7) ◽  
Author(s):  
Chunill Hah ◽  
Hyoun-Woo Shin

Detailed flow behavior in a modern transonic fan with a compound sweep is investigated in this paper. Both unsteady Reynolds-averaged Navier-Stokes (URANS) and large eddy simulation (LES) methods are applied to investigate the flow field over a wide operating range. The calculated flow fields are compared with the data from an array of high-frequency response pressure transducers embedded in the fan casing. The current study shows that a relatively fine computational grid is required to resolve the flow field adequately and to calculate the pressure rise across the fan correctly. The calculated flow field shows detailed flow structure near the fan rotor tip region. Due to the introduction of compound sweep toward the rotor tip, the flow structure at the rotor tip is much more stable compared to that of the conventional blade design. The passage shock stays very close to the leading edge at the rotor tip even at the throttle limit. On the other hand, the passage shock becomes stronger and detaches earlier from the blade passage at the radius where the blade sweep is in the opposite direction. The interaction between the tip clearance vortex and the passage shock becomes intense as the fan operates toward the stall limit, and tip clearance vortex breakdown occurs at near-stall operation. URANS calculates the time-averaged flow field fairly well. Details of measured rms static pressure are not calculated with sufficient accuracy with URANS. On the other hand, LES calculates details of the measured unsteady flow features in the current transonic fan with compound sweep fairly well and reveals the flow mechanism behind the measured unsteady flow field.

Author(s):  
Chunill Hah ◽  
Michael Hathaway ◽  
Joseph Katz

The primary focus of this paper is to investigate the effect of rotor tip gap size on how the rotor unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor at near stall operation (for example, where maximum pressure rise is obtained). A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at this flow condition with both a small and a large tip gaps. The numerically obtained flow fields at the small clearance matches fairly well with the available initial measurements obtained at the Johns Hopkins University with 3-D unsteady PIV in an index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. The numerical results are also compared with previously published measurements in a low speed single stage compressor (Maerz et al. [2002]). The current study shows that, with the smaller rotor tip gap, the tip clearance vortex moves to the leading edge plane at near stall operating condition, creating a nearly circumferentially aligned vortex that persists around the entire rotor. On the other hand, with a large tip gap, the clearance vortex stays inside the blade passage at near stall operation. With the large tip gap, flow instability and related large pressure fluctuation at the leading edge are observed in this one and a half stage compressor. Detailed examination of the unsteady flow structure in this compressor stage reveals that the flow instability is due to shed vortices near the leading edge, and not due to a three-dimensional separation vortex originating from the suction side of the blade, which is commonly referred to during a spike-type stall inception. The entire tip clearance flow is highly unsteady. Many vortex structures in the tip clearance flow, including the sheet vortex system near the casing, interact with each other. The core tip clearance vortex, which is formed with the rotor tip gap flows near the leading edge, is also highly unsteady or intermittent due to pressure oscillations near the leading edge and varies from passage to passage. For the current compressor stage, the evidence does not seem to support that a classical vortex breakup occurs in any organized way, even with the large tip gap. Although wakes from the IGV influence the tip clearance flow in the rotor, the major characteristics of rotor tip clearance flows in isolated or single stage rotors are observed in this one and a half stage axial compressor.


Author(s):  
Ronald Mailach ◽  
Ingolf Lehmann ◽  
Konrad Vogeler

In this two-part paper results of the periodical unsteady flow field within the third rotor blade row of the four-stage Dresden Low-Speed Research Compressor are presented. The main part of the experimental investigations was performed using Laser-Doppler-Anemometry. Results of the flow field at several spanwise positions between midspan and rotor blade tip will be discussed. In addition time-resolving pressure sensors at midspan of the rotor blades provide information about the unsteady profile pressure distribution. In part II of the paper the flow field in the rotor blade tip region will be discussed. The experimental results reveal a strong periodical interaction of the incoming stator wakes and the rotor blade tip clearance vortices. Consequently, in the rotor frame of reference the tip clearance vortices are periodical with the stator blade passing frequency. Due to the wakes the tip clearance vortices are separated into different segments. Along the mean vortex trajectory these parts can be characterised by alternating patches of higher and lower velocity and flow turning or subsequent counterrotating vortex pairs. These flow patterns move downstream along the tip clearance vortex path in time. As a result of the wake influence the orientation and extension of the tip clearance vortices as well as the flow blockage periodically vary in time.


Author(s):  
Chunill Hah ◽  
Melanie Voges ◽  
Martin Mueller ◽  
Heinz-Peter Schiffer

In the present study, unsteady flow phenomena due to tip clearance flow instability in a modern transonic axial compressor rotor are studied in detail. First, unsteady flow characteristics due the oscillating tip clearance vortex measured with the particle image velocimetry (PIV) and casing-mounted unsteady pressure transducers are analyzed and compared to numerical results with a large eddy simulation (LES). Then, measured characteristic frequencies of the unsteady flow near stall operation are investigated. The overall purpose of the study is to advance the current understanding of the unsteady flow field near the blade tip in an axial transonic compressor rotor near the stall operating condition. Flow interaction between the tip leakage vortex and the passage shock is inherently unsteady in a transonic compressor. The currently applied PIV measurements indicate that the flow near the tip region is unsteady even at the design condition. This self-induced unsteadiness increases significantly as the compressor operates toward the stall condition. PIV data show that the tip clearance vortex oscillates substantially near stall. The calculated unsteady characteristics from LES agree well with the PIV measurements. Calculated unsteady flow fields show that the formation of the tip clearance vortex is intermittent and the concept of vortex breakdown from steady flow analysis does not seem to apply in the current flow field. Fluid with low momentum near the pressure side of the blade close to the leading edge periodically spills over into the adjacent blade passage. The spectral analysis of measured end wall and blade surface pressure shows that there are two dominant frequencies near stall. One frequency is about 40–60% of the rotor rotation and the other dominant frequency is about 40–60% of the blade passing frequency (BPF). The first frequency represents the movement of a large blockage over several consecutive blade passages against the rotor rotation. The second frequency represents traditional tip flow instability, which has been widely observed in subsonic compressors. The LES simulations show that the second frequency is due to movement of the instability vortex.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Ronald Mailach ◽  
Ingolf Lehmann ◽  
Konrad Vogeler

In this two-part paper, results of the periodical unsteady flow field within the third rotor blade row of the four-stage Dresden low-speed research compressor are presented. The main part of the experimental investigations was performed using laser Doppler anemometry. Results of the flow field at several spanwise positions between midspan and rotor blade tip will be discussed. In addition, time-resolving pressure sensors at midspan of the rotor blades provide information about the unsteady profile pressure distribution. In Part II of the paper, the flow field in the rotor blade tip region will be discussed. The experimental results reveal a strong periodical interaction of the incoming stator wakes and the rotor blade tip clearance vortices. Consequently, in the rotor frame of reference, the tip clearance vortices are periodical with the stator blade passing frequency. Due to the wakes, the tip clearance vortices are separated into different segments. Along the mean vortex trajectory, these parts can be characterized by alternating patches of higher and lower velocities and flow turning or subsequent counter-rotating vortex pairs. These flow patterns move downstream along the tip clearance vortex path in time. As a result of the wake influence, the orientation and extension of the tip clearance vortices as well as the flow blockage periodically vary in time.


Author(s):  
Martin Lange ◽  
Matthias Rolfes ◽  
Ronald Mailach ◽  
Henner Schrapp

Since the early work on axial compressors the penalties due to radial clearances between blades and side walls are known and an ongoing focus of research work. The periodic unsteadiness of the tip clearance vortex, due to its interaction with the stator wakes, has only rarely been addressed in research papers so far. The current work presents experimental and numerical results from a four stage low speed research compressor modeling a state of the art compressor design. Time-resolved experimental measurements have been carried out at three different rotor tip clearances (gap to tip chord: 1.5%, 2.2%, 3.7%) to cover the third rotor’s casing static pressure and exit flow field. These results are compared with either steady simulations using different turbulence models or harmonic RANS calculations to discuss the periodical unsteady tip clearance vortex development at different clearance heights. The prediction of the local tip leakage flow is clearly improved by the EARSM turbulence model compared to the standard SST model. The harmonic RANS calculations (using the SST model) improve the prediction of time-averaged pressure rise and are used to analyze the rotor stator interaction in detail. The interaction of the rotor tip flow field with the passing stator wakes cause a segmentation of the tip clearance vortex and result in a sinusoidal variation in blockage downstream the rotor row.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Martin Lange ◽  
Matthias Rolfes ◽  
Ronald Mailach ◽  
Henner Schrapp

Since the early work on axial compressors, the penalties due to radial clearances between blades and side walls are known and are an ongoing focus of research work. The periodic unsteadiness of the tip clearance vortex (TCV), due to its interaction with the stator wakes, has only rarely been addressed in research papers so far. The current work presents experimental and numerical results from a four-stage low-speed research compressor (LSRC) modeling a state-of-the-art compressor design. Time-resolved experimental measurements have been carried out at three different rotor tip clearances (gap to tip chord: 1.5%, 2.2%, 3.7%) to cover the third rotor's casing static pressure and exit flow field. These results are compared with either steady simulations using different turbulence models or harmonic Reynolds-averaged Navier–Stokes (RANS) calculations to discuss the periodical unsteady TCV development at different clearance heights. The prediction of the local tip leakage flow is clearly improved by the explicit algebraic Reynolds stress model (EARSM) turbulence model compared to the standard shear stress transport (SST) model. The harmonic RANS calculations (using the SST model) improve the prediction of time-averaged pressure rise and are used to analyze the rotor stator interaction in detail. The interaction of the rotor tip flow field with the passing stator wakes causes a segmentation of the TCV and results in a sinusoidal variation in blockage downstream the rotor row.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Andreas Krug ◽  
Peter Busse ◽  
Konrad Vogeler

An important aspect of the aerodynamic flow field in the tip region of axial compressor rotors is the unsteady interaction between the tip clearance vortex (TCV) and the incoming stator wakes. In order to gain an improved understanding of the mechanics involved, systematic studies need to be performed. As a first step toward the characterization of the dynamic effects caused by the relative movement of the blade rows, the impact of a stationary wake-induced inlet disturbance on a linear compressor cascade with tip clearance will be analyzed. The wakes were generated by a fixed grid of cylindrical bars with variable pitch being placed at discrete pitchwise positions. This paper focuses on experimental studies conducted at the newly designed low-speed cascade wind tunnel in Dresden. The general tunnel configuration and details on the specific cascade setup will be presented. Steady state flow field measurements were carried out using five-hole probe traverses up- and downstream of the cascade and accompanied by static wall pressure readings. 2D-particle image velocimetry (PIV) measurements complemented these results by visualizing the blade-to-blade flow field. Hence, the structure of the evolving secondary flow system is evaluated and compared for all tested configurations.


2003 ◽  
Vol 125 (3) ◽  
pp. 405-415
Author(s):  
Ammar A. Al-Nahwi ◽  
James D. Paduano ◽  
Samir A. Nayfeh

This paper presents a first principles-based model of the fluid-induced forces acting on the rotor of an axial compressor. These forces are primarily associated with the presence of a nonuniform flow field around the rotor, such as that produced by a rotor tip clearance asymmetry. Simple, analytical expressions for the forces as functions of basic flow field quantities are obtained. These expressions allow an intuitive understanding of the nature of the forces and—when combined with a rudimentary model of an axial compressor flow field (the Moore-Greitzer model)—enable computation of the forces as a function of compressor geometry, torque and pressure-rise characteristics, and operating point. The forces predicted by the model are also compared to recently published measurements and more complex analytical models, and are found to be in reasonable agreement. The model elucidates that the fluid-induced forces comprise three main contributions: fluid turning in the rotor blades, pressure distribution around the rotor, and unsteady momentum storage within the rotor. The model also confirms recent efforts in that the orientation of fluid-induced forces is locked to the flow nonuniformity, not to tip clearance asymmetry as is traditionally assumed. The turning and pressure force contributions are shown to be of comparable magnitudes—and therefore of equal importance—for operating points between the design point and the peak of the compressor characteristic. Within this operating range, both “forward” and “backward” rotor whirl tendencies are shown to be possible. This work extends recent efforts by developing a more complete, yet compact, description of fluid-induced forces in that it accounts for all relevant force contributions, both tangential and radial, that may influence the dynamics of the rotor. Hence it constitutes an essential element of a consistent treatment of rotordynamic stability under the action of fluid-induced forces, which is the subject of Part II of this paper.


Author(s):  
S. Zerobin ◽  
S. Bauinger ◽  
A. Marn ◽  
A. Peters ◽  
F. Heitmeir ◽  
...  

This paper presents an experimental study of the unsteady flow field downstream of a high pressure turbine with ejected purge flows, with a special focus on a flow field discussion using the mode detection approach according to the theory of Tyler and Sofrin. Measurements were carried out in a product-representative one and a half stage turbine test setup, which consists of a high-pressure turbine stage followed by an intermediate turbine center frame and a low-pressure turbine vane row. Four independent purge mass flows were injected through the forward and aft cavities of the unshrouded high-pressure turbine rotor. A fast-response pressure probe was used to acquire time-resolved data at the turbine center frame duct inlet and exit. The interactions between the stator, rotor, and turbine center frame duct are identified as spinning modes, propagating in azimuthal direction. Time-space diagrams illustrate the amplitude variation of the detected modes along the span. The composition of the unsteadiness and its major contributors are of interest to determine the role of unsteadiness in the turbine center frame duct loss generation mechanisms and to avoid high levels of blade vibrations in the low-pressure turbine which can in turn result in increased acoustic emissions. This work offers new insight into the unsteady flow behavior downstream of a purged high-pressure turbine and its propagation through an engine-representative turbine center frame duct configuration.


Author(s):  
Xin Teng ◽  
WuLi Chu ◽  
HaoGuang Zhang ◽  
Kai Liu ◽  
JinGe Li

Over the service time, the rotating parts of turbine engine vary in their geometry. When aircraft take off or fly through a volcanic ash cloud, the particles are sucked into the engine, impinge the blade and gradually erode the surface. The impinging between particles and blades is responsible for the increase of the surface roughness. Also, during the long-time operation, the function of the blade’s stacking law combined with the centrifugal force could cause deviation of the stagger angle. Moreover, blade tip clearance could vary because of the casing deformation. All the deformation of geometry could severely reduce the engine performance and thus engine life. The work presented in this paper focused on the influence of geometry deformation in a real low-pressure compressor. The investigation is more difficult than most of the previously published researches with a total of five stages being considered. Due to the irregularities in geometry, it is difficult to numerically assess the performance of the compressor. The aim of this study is to give an analysis method that allows an efficient and accurate estimation of the performance for multistage compressor with geometry deformation. In the first step, the geometry models with different deviation in tip clearance, roughness and stagger angle were established respectively. A CFD study was then applied to the compressor with RANS method to calculate the flow field with different types of deformation. The variation of overall performance due to the deformation was finally analyzed to identify the dominant factor on influencing the performance of the compressor among different types of geometry deformation. A method based on polytropic efficiency analysis and flow field analysis was also established to specifically analyze which stage is most sensitive to the geometry deformation. The results show a significant influence of geometric deformation on the efficiency, total pressure rise and flow range of the multistage compressor. The conclusions of this study would provide an important guidance for engine overhaul in the factory.


Sign in / Sign up

Export Citation Format

Share Document