Development and Validation of a Three-Dimensional Multiphase Flow Computational Fluid Dynamics Analysis for Journal Bearings in Steam and Heavy Duty Gas Turbines

Author(s):  
Stephan Uhkoetter ◽  
Stefan aus der Wiesche ◽  
Michael Kursch ◽  
Christian Beck

The traditional method for hydrodynamic journal bearing analysis usually applies the lubrication theory based on the Reynolds equation and suitable empirical modifications to cover turbulence, heat transfer, and cavitation. In cases of complex bearing geometries for steam and heavy-duty gas turbines, this approach has its obvious restrictions in regard to detail flow recirculation, mixing, mass balance, and filling level phenomena. These limitations could be circumvented by applying a computational fluid dynamics (CFD) approach, resting closer to the fundamental physical laws. The present contribution reports about the state of the art of such a fully three-dimensional multiphase-flow CFD approach, including cavitation and air entrainment for high-speed turbomachinery journal bearings. It has been developed and validated using experimental data. Due to the high ambient shear rates in bearings, the multiphase-flow model for journal bearings requires substantial modifications in comparison to common two-phase flow simulations. Based on experimental data, it is found, that particular cavitation phenomena are essential for the understanding of steam and heavy-duty-type gas turbine journal bearings.

Author(s):  
Stephan Uhkoetter ◽  
Stefan aus der Wiesche ◽  
Michael Kursch ◽  
Christian Beck

The traditional method for hydrodynamic journal bearing analysis usually applies the lubrication theory based on the Reynolds equation and suitable empirical modifications to cover turbulence, heat transfer, and cavitation. In cases of complex bearing geometries for steam and heavy-duty gas turbines this approach has its obvious restrictions in regard to detail flow recirculation, mixing, mass balance, and filling level phenomena. These limitations could be circumvented by applying a computational fluid dynamics (CFD) approach resting closer to the fundamental physical laws. The present contribution reports about the state of the art of such a fully three-dimensional multiphase-flow CFD approach including cavitation and air entrainment for high-speed turbo-machinery journal bearings. It has been developed and validated using experimental data. Due to the high ambient shear rates in bearings, the multiphase-flow model for journal bearings requires substantial modifications in comparison to common two-phase flow simulations. Based on experimental data, it is found, that particular cavitation phenomena are essential for the understanding of steam and heavy-duty type gas turbine journal bearings.


2018 ◽  
Vol 16 (5) ◽  
pp. 750-761 ◽  
Author(s):  
J. Zhang ◽  
N. Sinha ◽  
M. Ross ◽  
A. E. Tejada-Martínez

Abstract Hydraulic or filtration efficiency of residential swimming pools, quantified in terms of residence time characteristics, is critical to disinfection and thus important to public health. In this study, a three-dimensional computational fluid dynamics model together with Eulerian and Lagrangian-based techniques are used for investigating the residence time characteristics of a passive tracer and particles in the water, representative of chemicals and pathogens, respectively. The flow pattern in the pool is found to be characterized by dead zone regions where water constituents may be retained for extended periods of times, thereby potentially decreasing the pool hydraulic efficiency. Two return-jet configurations are studied in order to understand the effect of return-jet location and intensity on the hydraulic efficiency of the pool. A two-jet configuration is found to perform on par with a three-jet configuration in removing dissolved constituents but the former is more efficient than the latter in removing or flushing particles. The latter result suggests that return-jet location and associated flow circulation pattern have an important impact on hydraulic efficiency. Thus return-jet configuration should be incorporated as a key parameter in the design of swimming pools complementing current design standards.


2017 ◽  
Vol 9 (1) ◽  
pp. 3-25 ◽  
Author(s):  
Jean-Paul Kone ◽  
Xinyu Zhang ◽  
Yuying Yan ◽  
Guilin Hu ◽  
Goodarz Ahmadi

A review of published three-dimensional, computational fluid dynamics models for proton exchange membrane fuel cells that accounts for multiphase flow is presented. The models can be categorized as models for transport phenomena, geometry or operating condition effects, and thermal effects. The influences of heat and water management on the fuel cell performance have been repeatedly addressed, and these still remain two central issues in proton exchange membrane fuel cell technology. The strengths and weaknesses of the models, the modelling assumptions, and the model validation are discussed. The salient numerical features of the models are examined, and an overview of the most commonly used computational fluid dynamic codes for the numerical modelling of proton exchange membrane fuel cells is given. Comprehensive three-dimensional multiphase flow computational fluid dynamic models accounting for the major transport phenomena inside a complete cell have been developed. However, it has been noted that more research is required to develop models that include among other things, the detailed composition and structure of the catalyst layers, the effects of water droplets movement in the gas flow channels, the consideration of phase change in both the anode and the cathode sides of the fuel cell, and dissolved water transport.


Author(s):  
Sven Winkler ◽  
Kristian Haase ◽  
Janosch Brucker ◽  
Bernhard Weigand

Turbine endwall contouring has become very popular for optimizing gas turbines. Increasingly often, three-dimensional contours are applied between turbine airfoils to reduce aerodynamic losses or heat transfer rates. These reductions directly result from the shaping of such contours which modifies the flow and thermal field in their vicinity. Here, we report on the development of novel endwall contours for a generic low pressure vane profile to reduce endwall heat transfer. Using the flat endwall as baseline, different endwall contours were created using the Ice Formation Method. This natural approach imposes only minimum restrictions on the design space and is therefore considered advantageous to other optimization procedures. The created contours were subsequently analyzed by Computational Fluid Dynamics simulations. Results showed that all created contours reduced endwall heat transfer compared to the baseline, the highest reduction being 7% in terms of the averaged endwall Stanton number. For this endwall contour, we performed detailed analyses of the numerically predicted flow and temperature fields to indicate how the shaping of this contour affects the flow and temperature fields and hence causes the observed heat transfer reduction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
K. Karalis ◽  
N. Karalis ◽  
N. Karkalos ◽  
Ν. Ntallis ◽  
G. S. E. Antipas ◽  
...  

AbstractA computational fluid dynamics (CFD) method is proposed to analyze the operation of a submerged electric arc furnace (SAF) used in ferronickel production. A three-dimensional mathematical model was used for the time-dependent solution of the fluid flow, heat transfer and electromagnetic phenomena. The slag's physical properties, which play a crucial role in the SAF operation, were previously determined using classical molecular dynamics simulations and empirical relationships. The analysis revealed that the main slag properties affecting SAF operation are density, viscosity and electrical conductivity—the latter two being mutually dependent. The high electrical conductivity values of the slag favor melting via the high Joule heat produced within the slag region. Calculation of the dimensionless Péclet and Reynolds numbers revealed that the slag velocities play a decisive role in heat transfer and further indicate that the slag flow is laminar. The average slag velocity calculated 0.0001 m/s with maxima in the vicinity of the electrodes.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Thomas Kinsey ◽  
Guy Dumas

The performance of a new concept of hydrokinetic turbine using oscillating hydrofoils to extract energy from water currents (tidal or gravitational) is investigated using URANS numerical simulations. The numerical predictions are compared with experimental data from a 2 kW prototype, composed of two rectangular oscillating hydrofoils of aspect ratio 7 in a tandem spatial configuration. 3D computational fluid dynamics (CFD) predictions are found to compare favorably with experimental data especially for the case of a single-hydrofoil turbine. The validity of approximating the actual arc-circle trajectory of each hydrofoil by an idealized vertical plunging motion is also addressed by numerical simulations. Furthermore, a sensitivity study of the turbine’s performance in relation to fluctuating operating conditions is performed by feeding the simulations with the actual time-varying experimentally recorded conditions. It is found that cycle-averaged values, as the power-extraction efficiency, are little sensitive to perturbations in the foil kinematics and upstream velocity.


Sign in / Sign up

Export Citation Format

Share Document