Heat Transfer Enhancement From a Blade Tip-Cap Using Metal Foams

2012 ◽  
Vol 134 (11) ◽  
Author(s):  
Owen Sengstock ◽  
Kamel Hooman

3D numerical results are presented to compare the heat transfer augmentation from a plate by using pin fins and metal foams. It is observed that maximizing the inlet velocity and pores per inch maximizes the overall heat transfer rate. The thickness of the foam layer has minimal effect on overall rates of heat transfer, but great effect on the maximum plate temperature. It has been shown that an optimum thickness exists which minimizes the hot spot temperature. Hot spots are generally located in the corners where velocities are the lowest. While the pressure drop remains almost unaltered, the heat transfer increases by 146% and 12% compared with a smooth channel and the optimal pin-fin data available in the literature, respectively. Interestingly, the additional mass of the foams, to achieve this performance, is approximately one-quarter of the best pin-fin sink quoted above.

Author(s):  
Michael E. Lyall ◽  
Alan A. Thrift ◽  
Atul Kohli ◽  
Karen A. Thole

The performance of many engineering devices from power electronics to gas turbines is limited by thermal management. Heat transfer augmentation in internal flows is commonly achieved through the use of pin fins, which increase both surface area and turbulence. The present research is focused on internal cooling of turbine airfoils using a single row of circular pin fins that is oriented perpendicular to the flow. Low aspect ratio pin fins were studied whereby the channel height to pin diameter was unity. A number of spanwise spacings were investigated for a Reynolds number range between 5000 to 30,000. Both pressure drop and spatially-resolved heat transfer measurements were taken. The heat transfer measurements were made on the endwall of the pin fin array using infrared thermography and on the pin surface using discrete thermocouples. The results show that the heat transfer augmentation relative to open channel flow is the highest for smallest spanwise spacings and lowest Reynolds numbers. The results also indicate that the pin fin heat transfer is higher than the endwall heat transfer.


Author(s):  
Kathryn L. Kirsch ◽  
Jason K. Ostanek ◽  
Karen A. Thole ◽  
Eleanor Kaufman

Arrays of variably-spaced pin fins are used as a conventional means to conduct and convect heat from internal turbine surfaces. The most common pin shape for this purpose is a circular cylinder. Literature has shown that beyond the first few rows of pin fins, the heat transfer augmentation in the array levels off and slightly decreases. This paper provides experimental results from two studies seeking to understand the effects of gaps in pin spacing (row removals) and alternative pin geometries placed in these gaps. The alternative pin geometries included large cylindrical pins and oblong pins with different aspect ratios. Results from the row removal study at high Reynolds number showed that when rows four through eight were removed, the flow returned to a fully-developed channel flow in the gap between pin rows. When larger alternative geometries replaced the fourth row, heat transfer increased further downstream into the array.


Author(s):  
Lesley M. Wright ◽  
Eungsuk Lee ◽  
Je-Chin Han

The effect of rotation on smooth narrow rectangular channels and narrow rectangular channels with pin-fins is investigated in this study. Pin-fins are commonly used in the narrow sections within the trailing edge of the turbine blade; the pin-fins act as turbulators to enhance internal cooling while providing structural support in this narrow section of the blade. The rectangular channel is oriented at 150° with respect to the plane of rotation, and the focus of the study involves narrow channels with aspect ratios of 4:1 and 8:1. The enhancement due to both conducting (copper) pin-fins and non-conducting (plexi-glass) pins is investigated. Due to the varying aspect ratio of the channel, the height-to-diameter ratio (hp/Dp) of the pins varies from two, for an aspect ratio of 4:1, to unity, for an aspect ratio of 8:1. A staggered array of pins with uniform streamwise and spanwise spacing (xp/Dp = sp/Dp = 2.0) is studied. With this array, 42 pin-fins are used, giving a projected surface density of 3.5 pins/in2 (0.543 pins/cm2), for the leading or trailing surfaces. The range of flow parameters include Reynolds number (ReDh = 5000–20000), rotation number (Ro = 0.0–0.302), and inlet coolant-to-wall density ratio (Δρ/ρ = 0.12). Heat transfer in a stationary pin-fin channel can be enhanced up to 3.8 times that of a smooth channel. Rotation enhances the heat transferred from the pin-fin channels 1.5 times that of the stationary pin-fin channels. Overall, rotation enhances the heat transfer from all surfaces in both the smooth and pin-fin channels. Finally, as the rotation number increases, spanwise variation increases in all channels.


Author(s):  
Zhiqi Zhao ◽  
Lei Luo ◽  
Xiaoxu Kan ◽  
Dandan Qiu ◽  
Xun Zhou

Abstract High thermal load on the turbine blade tip surface leads to high temperature corrosion and severe structural damage. One common way is to deliver a part of coolant through bleed holes onto the tip portion for cooling purpose. In this study, numerical simulations are performed to investigate the effects of rotation on the internal tip heat transfer in a simplified rotating two-pass channel with a bleed hole, which is applicable to the internal cooling passage of typical gas turbine blade. The bleed hole is placed on the tip wall of a two-pass channel at different locations, i.e. the ratio of distance from the outlet-side wall to width of the tip wall is 0.07, 0.21, 0.5, 0.78, 0.93, respectively. A smooth channel without bleed hole is used as Baseline. The Reynolds number is fixed at 10,000. The Ro numbers are varied from 0 to 0.4. Results show that a three-dimensional vortex, which is induced by the Coriolis force, is found at the bend region. It transports the fluid from the trailing side to leading side, which is beneficial to enhance tip heat transfer. The middle-mounted hole shows a better heat transfer augmentation compared to other hole arrangement. The rotation have a notable effect on the heat transfer and flow structures. Compared to the smooth channel, the heat transfer augmentation is about 34%.


2010 ◽  
Vol 133 (1) ◽  
Author(s):  
Michael E. Lyall ◽  
Alan A. Thrift ◽  
Karen A. Thole ◽  
Atul Kohli

The performance of many engineering devices from power electronics to gas turbines is limited by thermal management. Heat transfer augmentation in internal flows is commonly achieved through the use of pin fins, which increase both surface area and turbulence. The present research is focused on internal cooling of turbine airfoils using a single row of circular pin fins that is oriented perpendicular to the flow. Low aspect ratio pin fins were studied whereby the channel height to pin diameter was unity. A number of spanwise spacings were investigated for a Reynolds number range between 5000 and 30,000. Both pressure drop and spatially resolved heat transfer measurements were taken. The heat transfer measurements were made on the endwall of the pin fin array using infrared thermography and on the pin surface using discrete thermocouples. The results show that the heat transfer augmentation relative to open channel flow is the highest for smallest spanwise spacings and lowest Reynolds numbers. The results also indicate that the pin fin heat transfer is higher than the endwall heat transfer.


Author(s):  
Akhilesh P. Rallabandi ◽  
Yao-Hsien Liu ◽  
Je-Chin Han

The heat transfer characteristics of a rotating pin-fin roughened wedge shaped channel have been studied. The model incorporates ejection through slots machined on the narrower end of the wedge, simulating a rotor blade trailing edge. The copperplate regional average method is used to determine the heat transfer coefficient; pressure taps have been used to estimate the flow discharged through each slot. Tests have been conducted at high rotation (≈ 1 ) and buoyancy (≈ 2) numbers, in a pressurized rotating rig. Reynolds Numbers investigated range from 10,000 to 40,000 and rotational speeds range from 0–400rpm. Pin-fins studied are made of copper as well as non-conducting garolite. Results show high heat transfer coefficients in the proximity of the slot. A significant enhancement in heat transfer due to the pin-fins, compared with a smooth channel is observed. Even the non-conducting pin-fins, indicative of heat transfer on the end-wall show a significant enhancement in the heat transfer coefficient. Results also show a strong rotation effect, increasing significantly the heat transfer coefficient on the trailing surface — and reducing the heat transfer on the leading surface.


Author(s):  
G. N. Xie ◽  
B. Sunde´n ◽  
L. K. Wang ◽  
E. Utriainen

A common way to cool the tip is to use serpentine passages with 180-deg turn under the blade tip-cap. Improving internal convective cooling is therefore required to increase the blade tip life. In this paper, augmented heat transfer of a blade tip has been investigated numerically. The computational models consist of a two-pass channel with 180-deg turn and pin-fins mounted on the tip-cap, and a smooth two-pass channel. On the other hand, In particular manufacture, the casting process does not make a perfect cylinder pin, a fillet needs to be placed at the endwall. In order to make the conditions of simulations as close to real practice as possible, it is desirable to examine the effect of fillet on the tip heat transfer. Therefore, in the present study, the effect of pin base-fillet on heat transfer enhancement of a blade pin-finned tip-wall is investigated numerically. Inlet Reynolds numbers are ranging from 100,000 to 600,000. The computations are 3D, steady, incompressible and stationary. It is found that the pin-fins make the counter-rotating vortices towards pin-fin surfaces, resulting in continuous turbulent mixing near the pin-finned tip. Due to the combination of turning, impingement and pin-fin crossflow, the heat transfer coefficient of the pin-finned tip is a factor of as much as 2.66 higher than that of a smooth tip. Besides, with base-fillets the heat transfer enhancement is increased by about 10% while almost no additional pressure loss is resulted. It is suggested that the pin-fins could be used to enhance blade tip heat transfer and cooling.


Author(s):  
Akhilesh P. Rallabandi ◽  
Yao-Hsien Liu ◽  
Je-Chin Han

The heat transfer characteristics of a rotating pin-fin roughened wedge-shaped channel have been studied. The model incorporates ejection through slots machined on the narrower end of the wedge, simulating a rotor blade trailing edge. The copper plate regional average method is used to determine the heat transfer coefficient; pressure taps have been used to estimate the flow discharged through each slot. Tests have been conducted at high rotation (≈1) and buoyancy (≈2) numbers, in a pressurized rotating rig. Reynolds numbers investigated range from 10,000 to 40,000 and inlet rotation numbers range from 0 to 0.8. Pin-fins studied are made of copper. Results show high heat transfer in the proximity of the slot. A significant enhancement in heat transfer due to the pin-fins, compared with a smooth channel, is observed. Results also show a strong rotation effect, increasing significantly the heat transfer on the trailing surface and reducing the heat transfer on the leading surface.


Author(s):  
Marcel Otto ◽  
Jayanta Kapat ◽  
Mark Ricklick ◽  
Shantanu Mhetras

Abstract Ribs were added into a pin fin array for a uniquely new cooling concept enabled through additive manufacturing. Both heat transfer mechanisms are highly non-linear; thus, cannot be superimposed. Heat transfer measurements are obtained using the thermochromic liquid crystal technique in a trapezoidal duct with pin fins and rib turbulators. Three pin blockage ratios and four rib heights at Reynolds numbers between 40,000 and 106,000 were tested. The Nusselt number augmentation is generally higher at the longer base of the trapezoidal duct. The same high heat transfer trend is seen at the columns closer to the longer base of the trapezoidal duct than on the shorter base. Through the length of the duct, the flow shifts from the nose region to the larger opening on the opposite wall. Also, it is observed that increasing the blockage ratio as well as increasing the rib height, has a positive impact on heat transfer as ribs act as additional extended surfaces and alter the near-wall flow field. The heat transfer augmentation of pins and ribs is found to not be equal to the sum of both. The observed heat transfer augmentation of the combined cases exceeded over the rib and pin only cases by up to 100%, but the weighted friction factor also doubled. The combination of ribs and pins is an excellent concept to achieve more uniform cooling over an array at higher levels when pressure drop is not of concern.


Author(s):  
G. N. Xie ◽  
B. Sunde´n ◽  
L. Wang ◽  
E. Utriainen

The heat transferred to the turbine blade is substantially increased as the turbine inlet temperature is increased. Cooling methods are therefore much needed for the turbine blades to ensure a long durability and safe operation. The blade tip region is exposed to the hot gas flows. A common way to cool the tip is to use serpentine passages with 180-deg turn under the blade tip cap taking advantage of the three-dimensional turning effect and impingement. Improving internal convective cooling is therefore required to increase the blade tip life. In this paper, augmented heat transfer of a blade tip has been investigated numerically. The computational models consist of a two-pass channel with 180-deg turn and an array of pin-fins mounted on the tip-cap, and a smooth two-pass channel. Inlet Reynolds numbers are ranging from 100,000 to 600,000. The computations are 3D, steady, incompressible and stationary. The detailed 3D fluid flow and heat transfer over the tip surfaces are presented. The overall performance of the two models is evaluated. It is found that the pin-fins make the counter-rotating vortices towards pin-fin surfaces, resulting in continuous turbulent mixing near the pin-finned tip. Due to the combination of turning, impingement and pin-fin crossflow, the heat transfer coefficient of the pin-finned tip is a factor of as much as 1.84 higher than that of a smooth tip. This augmentation is achieved at the expense of a penalty of pressure drop around 35%. It is suggested that the pin-fins could be used to enhance blade tip heat transfer and cooling.


Sign in / Sign up

Export Citation Format

Share Document