Bend Geometries in Internal Cooling Channels for Improved Thermal Performance

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Krishnendu Saha ◽  
Sumanta Acharya

The pressure drop and heat transfer in a two pass internal cooling channel with two different bend geometries is experimentally studied with the goal of improving the thermal performance factor (TPF) in the coolant channel. The geometries studied are (1) a baseline U-bend geometry with a rectangular divider wall, (2) a symmetrical bulb at the end of the divider wall, and (3) a combination of the symmetrical bulb and a bow on the opposite outer wall leading to a shaped flow contraction and expansion in the bend. Tests are conducted for four Reynolds number ranging from 10,000 to 55,000. The symmetrical bulb eliminates the separation due to the sharp turn and makes the heat transfer distribution in the bend portion more uniform. This modification reduces the bend pressure drop by 37% and augments the TPF by nearly 29% compared to the baseline case. The combination of bulb and bow case increases the local heat transfer in the bend region significantly, and reduces the bend pressure drop by nearly 27% leading to an augmentation of the TPF of 32% compared to the baseline case. These improvements in TPF point to the benefits of using the improved bend designs in internal cooling channels.

Author(s):  
Krishnendu Saha ◽  
Sumanta Acharya

The pressure drop and heat transfer in a two pass internal cooling channel with two different bend geometries is experimentally studied with the goal of improving the Thermal Performance Factor (TPF) in the coolant channel. The geometries studied are: (1) a baseline U-bend geometry with a rectangular divider wall, (2) a symmetrical bulb at the end of the divider wall, and (3) a combination of the symmetrical bulb and a bow on the opposite outer wall leading to a shaped flow contraction and expansion in the bend. Tests are conducted for four Reynolds number ranging from 10000 to 55000. The symmetrical bulb eliminates the separation due to the sharp turn and makes the heat transfer distribution in the bend portion more uniform. This modification reduces the bend pressure drop by 37% and augments the TPF by nearly 29% compared to the baseline case. The combination of bulb and bow case increases the local heat transfer in the bend region significantly, and reduces the bend pressure drop by nearly 27% leading to an augmentation of the TPF of 32% compared to the baseline case. These improvements in TPF point to the benefits of using the improved bend designs in internal cooling channels.


Author(s):  
S. Huang ◽  
Y. Y. Yan ◽  
J. D. Maltson ◽  
E. Utriainen

Experiments have been conducted to investigate the overall thermal performance of a rectangular channel implemented with an elongated pedestal array. The staggered pedestals were elongated in the spanwise direction in order that the jet flow from between the pedestals impinges at the centre of the pedestals in the downstream row. The average heat transfer coefficient of the pedestal and the local heat transfer coefficient distribution of the bottom channel wall were investigated for different geometrical arrangements. The pressure drop across the pedestal bank was measured. The transient liquid crystal method was used to obtain the local heat transfer coefficient distribution on the bottom channel wall and the lumped capacitance method was used to measure the average heat transfer coefficient of the pedestals in the last two rows of the bank. Five pressure taps were arranged on the centerline of each gap between two pedestal rows to measure the pressure drop. The heat transfer coefficients were measured over the Reynolds number range from 10,000 to 30,000. The minimum flow area to the channel cross-section flow area ratio ranged from 0.149 to 0.333. The effects of pedestal geometry and array distribution were investigated in detail showing the relationship between the pedestal array geometry, heat transfer enhancement and pressure drop. Conclusions were drawn on the effects of geometry and flow conditions on overall thermal performance of the respective channels.


Author(s):  
Pavin Ganmol ◽  
Minking K. Chyu ◽  
Mary Anne Alvin

The design geometry and transport phenomena associated with the tip internal cooling can be very complex and has been little studied. Internal cooling channel near a tip region typically inherits a sharp, 180-degree, turn and little or no enhancement installation exists. To explore potential design for enhancement cooling, a series of experiments are performed to investigate the heat transfer enhancement by placing different pin-fins configurations in the tip-turn region of a two-pass channel with a 180-degree sharp turn. Transient liquid crystal technique is applied to acquire detailed local heat transfer data both on the channel surface and pin elements, for Reynolds number between 13,000 and 28,000. Present results suggest that the pin-fins can enhance heat transfer up to 2.3 fold in the tip-turn region and up to 1.3 fold for the entire channel. The presence of the pin-fins also changes the flow pattern in the post turn region which is resulting in more evenly distributed heat transfer downstream of the turn.


1997 ◽  
Vol 119 (3) ◽  
pp. 610-616 ◽  
Author(s):  
S. Mochizuki ◽  
A. Murata ◽  
M. Fukunaga

The objective of this study was to investigate, through experiments, the combined effects of a sharp 180 deg turn and rib patterns on the pressure drop performance and distributions of the local heat transfer coefficient in an entire two-pass rib-roughened channel with a 180 deg turn. The rib pitch-to-equivalent diameter ratio P/de was 1.0, the rib-height-to-equivalent diameter ratio e/de was 0.09, and the rib angle relative to the main flow direction was varied from 30 ∼ 90 deg with an interval of 15 deg. Experiments were conducted for Reynolds numbers in the range 4000 ∼ 30,000. It was disclosed that, due to the interactions between the bend-induced secondary flow and the rib-induced secondary flow, the combination of rib patterns in the channel before and after the turn causes considerable differences in the pressure drop and heat transfer performance of the entire channel.


2021 ◽  
pp. 1-28
Author(s):  
Farah Nazifa Nourin ◽  
Ryoichi S. Amano

Abstract The study presents the investigation on heat transfer distribution along a gas turbine blade internal cooling channel. Six different cases were considered in this study, using the smooth surface channel as a baseline. Three different dimples depth-to-diameter ratios with 0.1, 0.25, and 0.50 were considered. Different combinations of partial spherical and leaf dimples were also studied with the Reynolds numbers of 6,000, 20,000, 30,000, 40,000, and 50,000. In addition to the experimental investigation, the numerical study was conducted using Large Eddy Simulation (LES) to validate the data. It was found that the highest depth-to-diameter ratio showed the highest heat transfer rate. However, there is a penalty for increased pressure drop. The highest pressure drop affects the overall thermal performance of the cooling channel. The results showed that the leaf dimpled surface is the best cooling channel based on the highest Reynolds number's heat transfer enhancement and friction factor. However, at the lowest Reynolds number, partial spherical dimples with a 0.25 depth to diameter ratio showed the highest thermal performance.


Author(s):  
Jared M. Pent ◽  
Jay S. Kapat ◽  
Mark Ricklick

This paper examines the local and averaged endwall heat transfer effects of a staggered array of porous aluminum pin fins with a channel blockage ratio (blocked channel area divided by open channel area) of 50%. Two sets of pins were used with pore densities of 0 (solid) and 10 pores per inch (PPI). The pressure drop through the channel was also determined for several flow rates using each set of pins. Local heat transfer coefficients on the endwall were measured using Thermochromatic Liquid Crystal (TLC) sheets recorded with a charge-coupled device (CCD) camera. Static and total pressure measurements were taken at the entrance and exit of the test section to determine the overall pressure drop through the channel and explain the heat transfer trends through the channel. The heat transfer and pressure data was then compared to flow visualization tests that were run using a fog generator. Results are presented for the two sets of pins with Reynolds numbers between 25000 and 130000. Local HTC (heat transfer coefficient) profiles as well as spanwise and streamwise averaged HTC plots are displayed for both pin arrays. The thermal performance was calculated for each pin set and Reynolds number. All experiments were carried out in a channel with an X/D of 1.72, a Y/D of 2.0, and a Z/D of 1.72.


Author(s):  
Moyse´s Alberto Navarro ◽  
Andre´ Augusto Campagnole dos Santos

The spacer grids exert great influence on the thermal hydraulic performance of the PWR fuel assembly. The presence of the spacers has two antagonistic effects on the core: an increase of pressure drop due to constriction on the coolant flow area and increase of the local heat transfer downstream the grids caused by enhanced coolant mixing. The mixing vanes, present in most of the spacer grid designs, cause a cross and swirl flow between and in the subchannels, enhancing even more the local heat transfer at the cost of more pressure loss. Due to this important hydrodynamic feature the spacer grids are often improved aiming to obtain an optimal commitment between pressure drop and enhanced heat transfer. In the present work, the fluid dynamic performance downstream a 5 × 5 rod bundle with spacer grids is analyzed with a commercial CFD code (CFX 11.0). Eleven different split vane spacer grids with angles from 16° to 36° and a spacer without vanes were evaluated. The computational domain extends from ∼10 Dh upstream to ∼50 Dh downstream the spacer grids. The standard k-ε turbulence model with scalable wall functions and the total energy model were used in the simulations. The results show a considerable increase of the average Nusselt number and secondary mixing with the angle of the vane up to ∼20 Dh downstream the spacer, reducing greatly the influence of the vane angle beyond this region. As expected, the pressure loss through the spacer grid also showed considerable increase with the vane angle.


Author(s):  
Tobias Krille ◽  
Stefan Retzko ◽  
Rico Poser ◽  
Jens von Wolfersdorf

Abstract The transient Thermochromic Liquid Crystal (TLC) method is applied to determine the distribution of the local heat transfer coefficients using a configuration with parallel cooling channels at an engine relevant Reynolds number. The rectangular channels with a moderate aspect ratio and a high length-to-diameter ratio are equipped with one-sided oblique ribs with high blockage, which is a promising configuration for turbine near wall cooling applications. In this arrangement, the three inner channels should experience same flow and thermal conditions. Numerical simulations are performed to substantiate this assumption. The symmetric single channels are sprayed with narrowband TLC with various indication temperatures. Multiple experiments were conducted. All start at ambient conditions before the fluid is heated up to several temperatures between 46°C and 73°C. The results show that the determined local heat transfer coefficients and therefore the Nusselt numbers vary significantly for the different experimental conditions especially at locations of high heat transfer coefficient behind the ribs. A simplified procedure with respect to measurement uncertainties is applied to enable an easy and fast valuation on the data quality. This might be used within the data reduction analysis for such experiments directly. The approach is illustrated using the obtained experimental data.


Author(s):  
D. O. O’Dowd ◽  
Q. Zhang ◽  
L. He ◽  
M. L. G. Oldfield ◽  
P. M. Ligrani ◽  
...  

This paper presents an experimental and numerical investigation of the aero-thermal performance of an uncooled winglet tip, under transonic conditions. Spatially-resolved heat transfer data, including winglet tip surface and near tip side walls, are obtained using the transient infrared thermography technique within the Oxford High Speed Linear Cascade test facility. CFD predictions are also conducted using the Rolls-Royce HYDRA suite. Most of the spatial heat transfer variations on the tip surface are well-captured by the CFD solver. The transonic flow pattern and its influence on heat transfer are analyzed, which shows that the turbine blade tip heat transfer is greatly influenced by the shock wave structure inside the tip gap. The effect of the casing relative motion is also numerically investigated. The CFD results indicate that the local heat transfer distribution on the tip is affected by the relative casing motion, but the tip flow choking and shock wave structure within the tip gap still exist in the aft region of the blade.


Sign in / Sign up

Export Citation Format

Share Document