Flexural Vibrations in Uniform Beams According to the Timoshenko Theory

1953 ◽  
Vol 20 (4) ◽  
pp. 504-510
Author(s):  
R. A. Anderson

Abstract The general series solution is given for the flexural vibrations in a uniform beam according to the Timoshenko equations, which include the secondary effects of shear and rotatory inertia. In addition, the series solution is presented for the case of a pin-ended beam. For the special case of a concentrated transient force at the mid-point of a pin-ended beam, the bending-moment and shear-force solutions according to the Timoshenko and elementary equations are compared.

1979 ◽  
Vol 46 (2) ◽  
pp. 303-310 ◽  
Author(s):  
Norman Jones ◽  
J. Gomes de Oliveira

The theoretical procedure presented herein examines the influence of retaining the transverse shear force in the yield criterion and rotatory inertia on the dynamic plastic response of beams. Exact theoretical rigid perfectly plastic solutions are presented for a long beam impacted by a mass and a simply supported beam loaded impulsively. It transpires that rotatory inertia might play a small, but not negligible, role on the response of these beams. The results in the various figures indicate that the greatest departure from an analysis which neglects rotatory inertia but retains the influence of the bending moment and transverse shear force in the yield condition is approximately 11 percent for the particular range of parameters considered.


1954 ◽  
Vol 21 (4) ◽  
pp. 388-394
Author(s):  
R. A. Anderson

Abstract Solutions are obtained for the wave-length distribution of the bending-moment and shear-force responses in an infinite beam to ① a concentrated transverse-force impulse; ② a concentrated bending-moment impulse. These solutions are determined with the aid of a recent classical solution (1) for the flexural behavior of beams according to the Timoshenko theory. The results are used to predict the number and nature of the bending-moment and shear-force discontinuities propagating from disturbances of the type of 1 and 2.


1967 ◽  
Vol 89 (2) ◽  
pp. 203-210 ◽  
Author(s):  
R. R. Donaldson

Reynolds’ equation for a full finite journal bearing lubricated by an incompressible fluid is solved by separation of variables to yield a general series solution. A resulting Hill equation is solved by Fourier series methods, and accurate eigenvalues and eigenvectors are calculated with a digital computer. The finite Sommerfeld problem is solved as an example, and precise values for the bearing load capacity are presented. Comparisons are made with the methods and numerical results of other authors.


2011 ◽  
Vol 110-116 ◽  
pp. 3422-3428 ◽  
Author(s):  
Behzad Abdi ◽  
Hamid Mozafari ◽  
Ayob Amran ◽  
Roya Kohandel

This work devoted to an ellipsoidal head of pressure vessel under internal pressure load. The analysis is aimed at finding an optimum weight of ellipsoidal head of pressure vessel due to maximum working pressure that ensures its full charge with stresses by using imperialist competitive algorithm and genetic algorithm. In head of pressure vessel the region of its joint with the cylindrical shell is loaded with shear force and bending moments. The load causes high bending stresses in the region of the joint. Therefore, imperialist competitive algorithm was used here to find the optimum shape of a head with minimum weight and maximum working pressure which the shear force and the bending moment moved toward zero. Two different size ellipsoidal head examples are selected and studied. The imperialist competitive algorithm results are compared with the genetic algorithm results.


Author(s):  
Alexander V. Pesterev ◽  
Lawrence A. Bergman

Abstract The problem of calculating the dynamic response of a one-dimensional distributed parameter system excited by an oscillator traversing the system with an arbitrarily varying speed is investigated. An improved series representation for the solution is derived that takes into account the jump in the shear force at the point of the attachment of the oscillator, which makes it possible to efficiently calculate the distributed shear force and, where applicable, bending moment. The improvement is achieved through the introduction of the “quasi-static” solution, an approximation to the desired one, which makes it possible to apply to the moving oscillator problem the “mode-acceleration” technique conventionally used for acceleration of series in problems related to the steady-state vibration of distributed systems. Numerical results illustrating the efficiency of the method are presented.


Author(s):  
Mahathir Mahathir ◽  
Made Suangga

Vehicle load measurement technology continues to develop and one of them is the weigh in motion (WIM) load measurement technology. Weigh in motion (WIM) technology allow the measurement of vehicle load when vehicles moving, which is the actual load of traffic received by road and bridge. This study aims to compare the response of the bridge to the actual load of traffic from the WIM data with the standard load of SNI 1725:2016. This study using a composite steel girder bridge span 40 m, with WIM data of the Kaligawe Bridge in Semarang. Based on the characteristic of the vehicle axle load, class 40 namely the type of two-axle truck, has the largest axle load value 18 tons with an overload percentage 80%. Whereas based on the characteristic of the vehicle amount, class 30 namely the type of two-axle car, has the largest vehicle amount of 2296. The result of the 3D analysis of the bridge structure can be concluded that the WIM traffic data at Kaligawe Bridge Semarang obtained bending moment and shear force lower than the standard load of SNI 1725:2016. The ratio value of the maximum bending moment and shear force of WIM data traffic load to standard load of SNI 1725:2016 on 40 m span bridge are 0.93 and 0.96. This shows that the actual load of WIM data traffic has a load that is smaller than the standard load of SNI 1725: 2016. Keywords: bridge; design vehicle load; Monte Carlo simulation; weight in motion ABSTRAKTeknologi pengukuran beban kendaraan terus berkembang dan salah satunya adalah teknologi pengukuran beban kendaraan bergerak weigh in motion (WIM). Teknologi weigh in motion (WIM) memungkinkan pengukuran beban kendaraan dilakukan saat kendaraan melintas, yang merupakan beban aktual lalu lintas yang diterima oleh jalan dan jembatan. Penelitian ini bertujuan membandingkan respons jembatan terhadap beban aktual lalu lintas dari data WIM dengan beban rencana Standar SNI 1725:2016. Jembatan yang diteliti adalah jembatan gelagar baja komposit bentang 40 m, dengan menggunakan data WIM Jembatan Kaligawe Semarang. Berdasarkan karakteristik beban sumbu kendaraan, golongan 40 yaitu jenis kendaraan truk dua sumbu memiliki nilai beban sumbu terbesar 18 ton dengan persentase overload sebesar 80%. Sedangkan berdasarkan karakteristik jumlah kendaraan, golongan 30 yaitu jenis kendaraan mobil dua sumbu memiliki jumlah kendaraan sebesar 2296. Hasil analisis 3D struktur jembatan dapat disimpulkan bahwa beban aktual lalu lintas data WIM Jembatan Kaligawe Semarang menghasilkan momen lentur dan gaya geser yang lebih rendah dari beban standar SNI 1725:2016. Nilai rasio momen lentur dan gaya geser maksimum beban aktual lalu lintas data WIM terhadap beban standar SNI 1725:2016 pada jembatan bentang 40 m berturut-turut adalah 0.93 dan 0.96. Hal ini menunjukan bahwa beban aktual lalu lintas data WIM memiliki beban yang lebih kecil dari beban standar SNI 1725:2016.


As the population is growing, urbanization is caused which results in increasing of traffic with usage in more number of vehicles for different means of transport.As stated above the growth of population and the usage of vehicles for their different means will automatically result in increase in flow of vehicles which is called as traffic. To overcome the issue of traffic getting jammed (which means having obstacles for free moment or flow at a particular place), there are many different ways implemented to overcome it. When coming to Highways one of the efficient ways of overcoming it is construction of a flyover.Here in this project we are going to a design a flyover at Morampudi Junction located in Rajahmundry Andhra Pradesh along the National Highway 216A as a proposal in order to overcome the issue of traffic jam and also to reduce the rate of accidents occurring at the junction. By considering all the data collected conducting different examinations I am going to design and analyze the flyover using software STAAD.Pro V8i to study Bending Moment, Shear Force, Nodal Displacement values by considering various types of loads considered are Dead Loads, Live Loads, Wind Loads, Vehicle Load which are taken from Indian Standard Codes IS – 456, IS – 800 & IRC: 6 - 2016.


Sign in / Sign up

Export Citation Format

Share Document