The Influence of Rotatory Inertia and Transverse Shear on the Dynamic Plastic Behavior of Beams

1979 ◽  
Vol 46 (2) ◽  
pp. 303-310 ◽  
Author(s):  
Norman Jones ◽  
J. Gomes de Oliveira

The theoretical procedure presented herein examines the influence of retaining the transverse shear force in the yield criterion and rotatory inertia on the dynamic plastic response of beams. Exact theoretical rigid perfectly plastic solutions are presented for a long beam impacted by a mass and a simply supported beam loaded impulsively. It transpires that rotatory inertia might play a small, but not negligible, role on the response of these beams. The results in the various figures indicate that the greatest departure from an analysis which neglects rotatory inertia but retains the influence of the bending moment and transverse shear force in the yield condition is approximately 11 percent for the particular range of parameters considered.

1980 ◽  
Vol 47 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Norman Jones ◽  
J. Gomes de Oliveira

The response of a simply supported circular plate made from a rigid perfectly plastic material and subjected to a uniformly distributed impulsive velocity is developed herein. Plastic yielding of the material is controlled by a yield criterion which retains the transverse shear force as well as bending moments and the influence of rotatory inertia is included in the governing equations. Various equations and numerical results are presented which may be used to assess the importance of transverse shear effects and rotatory inertia for this particular problem.


1980 ◽  
Vol 24 (01) ◽  
pp. 24-30
Author(s):  
S. Anantha Ramu ◽  
K. J. Iyengar

The determination of the inelastic response of cylindrical shells under general impulsive loads is of relevance to marine structures such as submarines, in analyzing their slamming damages. The present study is concerned with the plastic response of a simply supported cylindrical shell under a general axisymmetric impulsive load. The impulsive load is assumed to impart an axisymmetric velocity to the shell, with a Gaussian distribution along the longitudinal axis of the shell. A simplified Tresca yield condition is used. The shell response is determined for various forms of impulses ranging from a concentrated impulse to a uniform impulse over the entire length of the shell. Conclusions about the influence of geometry of the shell and the spatial distribution of impulse on the plastic behavior of cylindrical shells are presented.


1953 ◽  
Vol 20 (4) ◽  
pp. 504-510
Author(s):  
R. A. Anderson

Abstract The general series solution is given for the flexural vibrations in a uniform beam according to the Timoshenko equations, which include the secondary effects of shear and rotatory inertia. In addition, the series solution is presented for the case of a pin-ended beam. For the special case of a concentrated transient force at the mid-point of a pin-ended beam, the bending-moment and shear-force solutions according to the Timoshenko and elementary equations are compared.


2011 ◽  
Vol 189-193 ◽  
pp. 1494-1497
Author(s):  
Wang Chen ◽  
Yin Pei Wang ◽  
Pei Ning Li ◽  
Chen Jin ◽  
Xiao Ming Sun

Elbow is a type of components widely used in a piping system, and so it is very important to know the plastic carrying capacity of elbow. In this study, the elastic-plastic behavior of elbows with various ratios of t/rm and relative bending radius R/rm were investigated in detail by using of three-dimensional (3D) non-linear finite element (FE) analyses, assuming elastic-perfectly-plastic material behaviour and taking geometric nonlinearity into account. The analyses indicated that elbow exhibited different behavior obviously at the elastic-plastic states subjected to In-Plane opening bending moment and closing bending moment. The closed form equations of elbow involving effect of tangent pipes were established.


Author(s):  
Thomasina V. Ball ◽  
Neil J. Balmforth

An asymptotic model is constructed to describe the bending of thin sheets, or plates, of viscoplastic fluid described by the Herschel–Bulkley constitutive law, which incorporates the von Mises yield condition and a nonlinear viscous stress. The model reduces to a number of previous ones from plasticity theory and viscous fluid mechanics in various limits. It is characterized by a yield criterion proposed by Ilyushin which compactly combines the effect of the bending moment and in-plane stress tensors through three particular invariants. The model is used to explore the bending of loaded flat plates, the deflection of impulsively driven circular plates, and the tension-controlled deflection of loaded beams.


1988 ◽  
Vol 110 (2) ◽  
pp. 148-153
Author(s):  
C. J. Tay ◽  
S. L. Toh

The collapse of thin cylindrical pipes subject to combined bending moment and external pressure has been studied. Nonlinear finite deflection thin shell theory is employed in the elastic solution. The analysis is extended to include the plastic behavior with the assumption of linear work-hardening material. Results are presented for various geometric material and load configurations.


Sign in / Sign up

Export Citation Format

Share Document