A New Reactor Concept for Efficient Solar-Thermochemical Fuel Production

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Ivan Ermanoski ◽  
Nathan P. Siegel ◽  
Ellen B. Stechel

We describe and analyze the efficiency of a new solar-thermochemical reactor concept, which employs a moving packed bed of reactive particles produce of H2 or CO from solar energy and H2O or CO2. The packed bed reactor incorporates several features essential to achieving high efficiency: spatial separation of pressures, temperature, and reaction products in the reactor; solid–solid sensible heat recovery between reaction steps; continuous on-sun operation; and direct solar illumination of the working material. Our efficiency analysis includes material thermodynamics and a detailed accounting of energy losses, and demonstrates that vacuum pumping, made possible by the innovative pressure separation approach in our reactor, has a decisive efficiency advantage over inert gas sweeping. We show that in a fully developed system, using CeO2 as a reactive material, the conversion efficiency of solar energy into H2 and CO at the design point can exceed 30%. The reactor operational flexibility makes it suitable for a wide range of operating conditions, allowing for high efficiency on an annual average basis. The mixture of H2 and CO, known as synthesis gas, is not only usable as a fuel but is also a universal starting point for the production of synthetic fuels compatible with the existing energy infrastructure. This would make it possible to replace petroleum derivatives used in transportation in the U.S., by using less than 0.7% of the U.S. land area, a roughly two orders of magnitude improvement over mature biofuel approaches. In addition, the packed bed reactor design is flexible and can be adapted to new, better performing reactive materials.

2014 ◽  
Vol 2014 (1) ◽  
pp. 1772-1783
Author(s):  
Drew Casey ◽  
John Caplis

ABSTRACT As observed during several recent major oil spills, most notably the BP Deepwater Horizon Oil Spill, the current regulatory planning standard for mechanical recovery equipment has been often scrutinized as an inadequate means for vessel and facility plan holders to calculate their oil spill equipment needs. Effective Daily Recovery Capacity, or EDRC, was developed during a negotiated rulemaking process following the enactment of the Oil Pollution Act of 1990. During an IOSC 2011 Workshop sponsored by the American Petroleum Institute (API), the Bureau of Safety and Environmental Enforcement (BSEE), and the U.S. Coast Guard, there was general agreement among workshop participants that EDRC is not an accurate planning tool for determining oil spill response equipment needs. In addition, many attendees agreed that EDRC should account for the skimmer system as a whole, not individual skimmer components such as pump nameplate capacity. In 2012, the Bureau of Safety and Environmental Enforcement (BSEE) and the U.S. Coast Guard initiated and completed a third-party, independent research contract to review the existing EDRC regulations and make recommendations for improving planning standards for mechanical recovery. The contractor's final report methodology is based on oil spill thickness as a fundamental component in calculating mechanical recovery potential, and it emphasizes the importance of response time on-scene and storage for recovered oil. This research provides a more realistic and scientific approach to evaluating skimmer system performance, and more accurately accounts for a wide range of operating conditions and external influences. The federal government, with input from the oil industry, OSRO community, and other interested stakeholders, now has a sound methodology to serve as a starting point for redesigning the current planning standard that more accurately reflects skimmer system performance.


2002 ◽  
Vol 752 ◽  
Author(s):  
Victor Diakov ◽  
Arvind Varma

ABSTRACTFor methanol oxidative dehydrogenation to formaldehyde, the performance of the packed-bed membrane reactor (PBMR) is compared with that of the conventional fixed-bed reactor (FBR) over a wide range of operating conditions. The reaction was studied in three reactor configurations: the conventional FBR and the packed-bed membrane reactor, with either methanol (PBMR-M) or oxygen (PBMR-O) as the permeating component. The kinetics of methanol and formaldehyde partial oxidation reactions were determined and incorporated in a PBMR model. Both experimental data and model considerations demonstrate that the PBMR enhances reactant conversion and selectivity.Small oscillations in CO production were observed experimentally. Their amplitude was taken as a basis for comparison of packed-bed operation instability. The likely source of oscillatory behavior is the non-uniformity in reaction conditions along the reactor. It was found that membrane distributed feed, by providing a more uniform reactor operation, is an effective remedy from these instabilities.It is found, both by simulations and experimental observations, that relative reactor performance depends strongly on the operating conditions. Using formaldehyde yield as the basis for optimization, optimal reactor performances are determined to be in the order: PBMR-O > FBR > PBMR-M. Further PBMR productivity enhancement is possible by optimizing the membrane feed distribution pattern.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 607
Author(s):  
Tommy R. Powell ◽  
James P. Szybist ◽  
Flavio Dal Forno Chuahy ◽  
Scott J. Curran ◽  
John Mengwasser ◽  
...  

Modern boosted spark-ignition (SI) engines and emerging advanced compression ignition (ACI) engines operate under conditions that deviate substantially from the conditions of conventional autoignition metrics, namely the research and motor octane numbers (RON and MON). The octane index (OI) is an emerging autoignition metric based on RON and MON which was developed to better describe fuel knock resistance over a broader range of engine conditions. Prior research at Oak Ridge National Laboratory (ORNL) identified that OI performs reasonably well under stoichiometric boosted conditions, but inconsistencies exist in the ability of OI to predict autoignition behavior under ACI strategies. Instead, the autoignition behavior under ACI operation was found to correlate more closely to fuel composition, suggesting fuel chemistry differences that are insensitive to the conditions of the RON and MON tests may become the dominant factor under these high efficiency operating conditions. This investigation builds on earlier work to study autoignition behavior over six pressure-temperature (PT) trajectories that correspond to a wide range of operating conditions, including boosted SI operation, partial fuel stratification (PFS), and spark-assisted compression ignition (SACI). A total of 12 different fuels were investigated, including the Co-Optima core fuels and five fuels that represent refinery-relevant blending streams. It was found that, for the ACI operating modes investigated here, the low temperature reactions dominate reactivity, similar to boosted SI operating conditions because their PT trajectories lay close to the RON trajectory. Additionally, the OI metric was found to adequately predict autoignition resistance over the PT domain, for the ACI conditions investigated here, and for fuels from different chemical families. This finding is in contrast with the prior study using a different type of ACI operation with different thermodynamic conditions, specifically a significantly higher temperature at the start of compression, illustrating that fuel response depends highly on the ACI strategy being used.


Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 611 ◽  
Author(s):  
Anita Haeussler ◽  
Stéphane Abanades ◽  
Julien Jouannaux ◽  
Anne Julbe

Due to the requirement to develop carbon-free energy, solar energy conversion into chemical energy carriers is a promising solution. Thermochemical fuel production cycles are particularly interesting because they can convert carbon dioxide or water into CO or H2 with concentrated solar energy as a high-temperature process heat source. This process further valorizes and upgrades carbon dioxide into valuable and storable fuels. Development of redox active catalysts is the key challenge for the success of thermochemical cycles for solar-driven H2O and CO2 splitting. Ultimately, the achievement of economically viable solar fuel production relies on increasing the attainable solar-to-fuel energy conversion efficiency. This necessitates the discovery of novel redox-active and thermally-stable materials able to split H2O and CO2 with both high-fuel productivities and chemical conversion rates. Perovskites have recently emerged as promising reactive materials for this application as they feature high non-stoichiometric oxygen exchange capacities and diffusion rates while maintaining their crystallographic structure during cycling over a wide range of operating conditions and reduction extents. This paper provides an overview of the best performing perovskite formulations considered in recent studies, with special focus on their non-stoichiometry extent, their ability to produce solar fuel with high yield and performance stability, and the different methods developed to study the reaction kinetics.


Author(s):  
E. Benvenuti ◽  
B. Innocenti ◽  
R. Modi

This paper outlines parameter selection criteria and major procedures used in the PGT 25 gas turbine power spool aerodynamic design; significant results of the shop full-load tests are also illustrated with reference to both overall performance and internal flow-field measurements. A major aero-design objective was established as that of achieving the highest overall performance levels possible with the matching to latest generation aero-derivative gas generators; therefore, high efficiencies were set as a target both for the design point and for a wide range of operating conditions, to optimize the turbine’s uses in mechanical drive applications. Furthermore, the design was developed to reach the performance targets in conjunction with the availability of a nominal shaft speed optimized for the direct drive of pipeline booster centrifugal compressors. The results of the full-load performance testing of the first unit, equipped with a General Electric LM 2500/30 gas generator, showed full attainment of the design objectives; a maximum overall thermal efficiency exceeding 37% at nominal rating and a wide operating flexibility with regard to both efficiency and power were demonstrated.


2021 ◽  
Author(s):  
Stefan D. Cich ◽  
J. Jeffrey Moore ◽  
Chris Kulhanek ◽  
Meera Day Towler ◽  
Jason Mortzheim

Abstract An enabling technology for a successful deployment of the sCO2 close-loop recompression Brayton cycle is the development of a compressor that can maintain high efficiency for a wide range of inlet conditions due to large variation in properties of CO2 operating near its dome. One solution is to develop an internal actuated variable Inlet Guide Vane (IGV) system that can maintain high efficiency in the main and re-compressor with varying inlet temperature. A compressor for this system has recently been manufactured and tested at various operating conditions to determine its compression efficiency. This compressor was developed with funding from the US DOE Apollo program and industry partners. This paper will focus on the design and testing of the main compressor operating near the CO2 dome. It will look at design challenges that went into some of the decisions for rotor and case construction and how that can affect the mechanical and aerodynamic performance of the compressor. This paper will also go into results from testing at the various operating conditions and how the change in density of CO2 affected rotordynamics and overall performance of the machine. Results will be compared to expected performance and how design changes were implanted to properly counter challenges during testing.


2004 ◽  
Vol 1 (1) ◽  
pp. 18-20 ◽  
Author(s):  
Mark C. Williams ◽  
Bruce R. Utz ◽  
Kevin M. Moore

The U.S. Department of Energy’s (DOE) Office of Fossil Energy’s (FE) National Energy Technology Laboratory (NETL), in partnership with private industries, is leading the development and demonstration of high efficiency solid oxide fuel cells (SOFCs) and fuel cell turbine hybrid power generation systems for near term distributed generation (DG) markets with an emphasis on premium power and high reliability. NETL is partnering with Pacific Northwest National Laboratory (PNNL) in developing new directions in research under the Solid-State Energy Conversion Alliance (SECA) initiative for the development and commercialization of modular, low cost, and fuel flexible SOFC systems. The SECA initiative, through advanced materials, processing and system integration research and development, will bring the fuel cell cost to $400 per kilowatt (kW) for stationary and auxiliary power unit (APU) markets. The President of the U.S. has launched us into a new hydrogen economy. The logic of a hydrogen economy is compelling. The movement to a hydrogen economy will accomplish several strategic goals. The U.S. can use its own domestic resources—solar, wind, hydro, and coal. The U.S. uses 20 percent of the world’s oil but has only 3 percent of resources. Also, the U.S. can reduce green house gas emissions. Clear Skies and Climate Change initiatives aim to reduce carbon dioxide (CO2), nitrogen oxides (NOx), and sulfur dioxide (SO2) emissions. SOFCs have no emissions, so they figure significantly in these DOE strategies. In addition, DG—SOFCs, reforming, energy storage—has significant benefit for enhanced security and reliability. The use of fuel cells in cars is expected to bring about the hydrogen economy. However, commercialization of fuel cells is expected to proceed first through portable and stationary applications. This logic says to develop SOFCs for a wide range of stationary and APU applications, initially for conventional fuels, then switch to hydrogen. Like all fuel cells, the SOFC will operate even better on hydrogen than conventional fuels. The SOFC hybrid is a key part of the FutureGen plants. FutureGen is a major new Presidential initiative to produce hydrogen from coal. The highly efficient SOFC hybrid plant will produce electric power and other parts of the plant could produce hydrogen and sequester CO2. The hydrogen produced can be used in fuel cell cars and for SOFC DG applications.


Author(s):  
Jia Mi ◽  
Lin Xu ◽  
Sijing Guo ◽  
Mohamed A. A. Abdelkareem ◽  
Lingshuai Meng ◽  
...  

Hydraulic-electromagnetic Energy-regenerative Shock Absorber (HESA) has been proposed recently, with the purpose of mitigating vibration in vehicle suspensions and recovering vibration energy traditionally dissipated by oil dampers simultaneously. The HESA is composed of hydraulic cylinder, check valves, accumulators, hydraulic motor, generator, pipelines and so on. The energy conversion from hydraulic energy to mechanical energy mainly depends on the hydraulic motor between two accumulators. Hence, the dimension match and parameter settings of hydraulic motor for the HESA are extremely important for efficiency of the whole system. This paper studies the methods and steps for dimension matching and parameter settings of the hydraulic motor in a case of a typical commercial vehicle. To evaluate suspension’s vibration characteristics, experiments on the target tour bus have been done. Simulations are conducted to investigate the effects of the hydraulic motor in different working conditions. The simulation results verify that the methods and steps adopted are accurate over a wide range of operating conditions and also show that appropriate matching and parameter settings of the hydraulic motor attached in the HESA can work with high efficiency and then effectively improving energy conversion efficiency for the whole system. Therefore, the theory of the matching progress can guide the future design of an HESA.


Sign in / Sign up

Export Citation Format

Share Document