Acoustic Radiation of a Cylindrical Piezoelectric Power Transformer

2013 ◽  
Vol 80 (6) ◽  
Author(s):  
He Zhang ◽  
Guiru Ye ◽  
Zhicheng Zhang

Theoretical analysis is performed for the sound radiation of a cylindrical power transformer composed of piezoelectric transducers with radial polarization. The transformer is driven in thickness-stretch mode, and an exact solution is obtained for the sound pressure and sound power level in the surrounding fluid. Representative examples are used to illustrate the sound field induced by the operation of the transformer. Numerical results indicate that the electrical impedance and the thickness ratio of actuator/sensor to metal core have considerable effects on sound radiation of the cylindrical power transformer.

2002 ◽  
Vol 8 (6) ◽  
pp. 877-902 ◽  
Author(s):  
W. Laplante ◽  
T. Chen ◽  
A. Baz ◽  
W. Sheilds

Vibration and sound radiation from fluid-loaded cylindrical shells are controlled using patches of Active Constrained Layer Damping (ACLD). The performance and the enhanced damping characteristics via reduced vibrations and sound radiation in the surrounding fluid is demonstrated both theoretically and experimentally. A prime motivation for this work is the potential wide applications in submarines and torpedoes where acoustic stealth is critical to the effectiveness of missions. A finite element model is also developed to predict the vibration and the acoustic radiation in the surrounding fluid of the ACLD-treated cylinders. The developed model is used to study the effectiveness of the control and placement strategies of the ACLD in controlling the fluid-structure interactions. A water tank is constructed that incorporates test cylinders treated with two ACLD patches placed for targeting specific vibration modes. Using this arrangement, the effectiveness of different control strategies is studied when the submerged cylinders are subjected to internal excitation, and the radiated sound pressure level in the water is observed. Comparisons are made between the experimental results and the theoretical predictions to validate the finite element model.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Bipin Kumar ◽  
Vinayak Ranjan ◽  
Mohammad Sikandar Azam ◽  
Piyush Pratap Singh ◽  
Pawan Mishra ◽  
...  

A comparison of sound radiation behavior of plate in air medium with attached discrete patches/point masses having different thickness variations with different taper ratio of 0.3, 0.6, and 0.9 is analysed. Finite element method is used to find the vibration characteristics while Rayleigh integral is used to predict the sound radiation characteristics. Minimum peak sound power level obtained is at a taper ratio of 0.6 with parabolic increasing-decreasing thickness variation for plate with four discrete patches. At higher taper ratio, linearly increasing-decreasing thickness variation is another alternative for minimum peak sound power level suppression with discrete patches. It is found that, in low frequency range, average radiation efficiency remains almost the same, but near first peak, four patches or four point masses cause increase in average radiation efficiency; that is, redistribution of point masses/patches does have effect on average radiation efficiency at a given taper ratio.


1994 ◽  
Vol 1 (4) ◽  
pp. 249-270 ◽  
Author(s):  
Hiromi Suga ◽  
Hideki Tachibana

In order to investigate the sound radiation characteristics of lightweight roof constructions when excited by rainfall, an artificial rainfall apparatus was constructed to simulate natural rainfall conditions. From the measurement results, it can be seen that the facility developed is practically applicable for the examination of the sound radiation characteristics of rain noise. It was therefore used in the measurement of sound power of 20 lightweight roofs. In addition, the relationship between sound power level and sound transmission loss measured by the sound intensity method was investigated statistically. As a result, it has been shown that a linear relationship exists between them and there is a possibility of estimating the sound power level from the transmission loss.


2018 ◽  
Vol 8 (12) ◽  
pp. 2542 ◽  
Author(s):  
Abhijeet Chatterjee ◽  
Vinayak Ranjan ◽  
Mohammad Azam ◽  
Mohan Rao

This paper compares the vibroacoustic behavior of a tapered annular circular plate having different parabolic varying thickness with different combinations of rectangular and concentric stiffener patches keeping the mass of the plate and the patch constant for a clamped-free boundary condition. Both numerical and analytical methods are used to solve the plate. The finite element method (FEM) is used to determine the vibration characteristic and both Rayleigh integral and FEM is used to determine the acoustic behavior of the plate. It is observed that a Case II plate with parabolic decreasing–increasing thickness variation for a plate with different stiffener patches shows reduction in frequency parameter in comparison to other cases. For acoustic response, the variation of peak sound power level for different combinations of stiffener patches is investigated with different taper ratios. It is investigated that Case II plate with parabolic decreasing–increasing thickness variation for an unloaded tapered plate as well as case II plate with 2 rectangular and 4 concentric stiffeners patches shows the maximum sound power level among all variations. However, it is shown that the Case III plate with parabolically increasing–decreasing thickness variation with different combinations of rectangular and concentric stiffeners patches is least prone to acoustic radiation. Furthermore, it is shown that at low forcing frequency, average radiation efficiency with different combinations of stiffeners patches remains the same, but at higher forcing frequency a higher taper ratio causes higher radiation efficiency, and the radiation peak shifts towards the lower frequency and alters its stiffness as the taper ratio increases. Finally, the design options for peak sound power actuation and reduction for different combinations of stiffener patches with different taper ratios are suggested.


2012 ◽  
Vol 57 (4) ◽  
pp. 1-10
Author(s):  
Helene Gounet ◽  
Serge Lewy

Turboshaft engines can be the main source of noise due to a helicopter at takeoff. Some new silencing designs of the inlets and of the ejector were tested on a Turbomeca Arrius 2B2 engine in an open-air static facility. Intake and exhaust are not axisymmetric, and conventional directivity patterns of sound field on a horizontal arc of circle are insufficient. A special microphone array on a vertical half-circle translating axially was built. Data processing has been implemented to plot maps of sound pressure levels in third-octave bands and to compute sound power levels. Intake and exhaust radiations are separated thanks to mufflers on the other side. The lined fins in the secondary lateral inlet well reduce the compressor tone, which is largely dominant in intake radiation. Its sound power level is decreased by 7 dB. The novel ejector is also successful to reduce exhaust broadband noise above 1 kHz with a gain of 5 dB on sound power level. Finally, the benefit on the acoustic emission of the helicopter in flight is appraised.


Author(s):  
Michael Ertl ◽  
Hermann Landes

The international standard for the determination of the sound power level of transformers allows both the sound pressure and the sound intensity measurement method. Since the sound measurements take place in the reactive near-field next to the vibrating transformer tank walls, local disturbances influence the sound field characteristics at the measurement positions. As a result, the measured mean sound power level differs commonly up to 6dB at comparative measurements with both methods. Beyond these near field effects, the influence of an industrial measurement environment (background sound sources, hard-reflecting floor, semi-reverberant walls, and standing waves) to the sound pressure and sound intensity field characteristics is investigated. Hereby, numerical analyses based on 3D-FEM with consideration of the fluid-structure-coupling are used. The measured sound level differences can be re-produced and clarified in numerical analyses.


Author(s):  
Junyi Yang ◽  
Hugo E. Camargo ◽  
David S. Yantek

Operators of longwall mining systems experience sound levels of 93–105 dB(A) and receive noise exposures that place them at risk of noise-induced hearing loss. To address the problem, the National Institute for Occupational Safety and Health (NIOSH*) Office of Mine Safety and Health Research (OMSHR) has conducted research to develop engineering noise controls for longwall systems. In previous field surveys, the sound radiated by the cutting drums was identified as a major hazard, especially considering their close proximity to the operators. Cutting drums are complex structures consisting of curved metal pieces welded together, and NIOSH has used modeling and simulation to characterize the acoustic properties of this structure. Based on a finite element (FE) model of the drum, the boundary element method (BEM) was used to predict the sound radiated from the vibrating drum due to an excitation force applied to one of the cutting bits. Simulations were used to examine the following with respect to the radiated sound power: (1) the ramifications of adding the welds to the model rather than assuming direct attachment between the metal components; (2) the effect of weld stiffness; (3) the relative contributions of the vanes and the cylindrical part of the drum; and (4) the sensitivity to the direction of the applied force. Parametric studies have shown that including the weld in the finite element model has a significant effect on the predicted sound power level, while varying the weld Young’s modulus by 20% does not radically change the sound radiation. Panel contribution analysis indicates that the vanes contribute much more to the total sound power level, as compared to the cylindrical part of the drum. Consequently, it is expected that damping treatments would be most effective at controlling noise radiation if applied to the vanes rather than to the cylindrical portion. Finally, case study results show that the sound power levels are most sensitive to the tangential and bending forces above 500 Hz. For frequencies below 500 Hz, the sound power level is most sensitive to axial and bending forces.


2016 ◽  
Vol 41 (1) ◽  
pp. 75-86 ◽  
Author(s):  
Wojciech P. Rdzanek

Abstract A rigorous analysis of sound radiation by a pulsating sphere forming a resonator together with a semi-spherical cavity is presented. Both hard and soft boundaries are considered, as well as mixed. The problem is solved by dividing the entire region into two subregions, one surrounding the sphere and containing the cavity and the other for the remaining half-space. The continuity conditions are applied to obtain the acoustic pressure. Then the acoustic radiation resistance is calculated both in the near- and far-field. The acoustic radiation reactance is calculated in the impedance approach. The resonance frequencies are determined, for which a significant growth of the sound pressure level is observed as well as the sound field directivity. The accuracy and convergence of these rigorous results has been examined empirically.


Sign in / Sign up

Export Citation Format

Share Document