Experimental Measurements of Critical Heat Flux in Expanding Microchannel Arrays

2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Mark J. Miner ◽  
Patrick E. Phelan ◽  
Brent A. Odom ◽  
Carlos A. Ortiz

The effect of an expanding microchannel cross-section on flow boiling critical heat flux (CHF) is experimentally investigated across four rates of expansion. A pumped-loop apparatus is developed to boil R-134a in an array of microchannels cut into copper; a test section is designed to facilitate interchange of the microchannel specimens, allowing consistency across experiments. An optimum expansion angle allowing maximum heat flux is observed, the location of which increases with the mass flow rate. The boiling number does not indicate any optimum in the range observed, showing a nearly monotonic increase with expansion angle. The familiar increase in critical heat flux with mass flux is observed, though expansion shifts the CHF-mass flux curves in a favorable direction. The existence of an optimum expansion angle confirms an earlier qualitative hypothesis by the authors and suggests that microchannel heat sinks offer opportunities for methodical improvement of flow boiling stability and performance.

2003 ◽  
Vol 125 (6) ◽  
pp. 1038-1045 ◽  
Author(s):  
Yuichi Mitsutake ◽  
Masanori Monde

An ultra high critical heat flux (CHF) was attempted using a highly subcooled liquid jet impinging on a small rectangular heated surface of length 5∼10mm and width 4 mm. Experiments were carried out at jet velocities of 5∼60m/s, a jet temperature of 20°C and system pressures of 0.1∼1.3MPa. The degree of subcooling was varied from 80 to 170 K with increasing system pressure. The general correlation for CHF is shown to be applicable for such a small heated surface under a certain range of conditions. The maximum CHF achieved in these experiments was 211.9 MW/m2, recorded at system pressure of 0.7 MPa, jet velocity of 35 m/s and jet subcooling of 151 K, and corresponds to 48% of the theoretical maximum heat flux proposed by Gambill and Lienhard.


2012 ◽  
Vol 588-589 ◽  
pp. 1813-1816
Author(s):  
Lu Zhi Tan ◽  
Ji Tian Han ◽  
Chang Nian Chen ◽  
Peng Cheng Dou

Experimental studies on critical heat flux (CHF) have been conducted in a uniformly heated horizontal straight tube and helically-coiled tube respectively with R-134a as the working fluid. The helically-coiled tube has the same heated length and inner diameter with the straight tube and experiments were performed under the following conditions: pressure from 0.4 to 2.5 MPa, mass flux values from 80 to 1500 kg m-2 s-1, inlet quality from -0.23 to 0.28 and critical quality from 0.65 to 0.86. The CHF data of the helically-coiled tube have been compared with that of the straight tube. The results show that the helically-coiled tube gets significant improvement in the CHF values vs. the straight tube under the same conditions and the degree of improvement depends on the mass flux, system pressure, inlet quality and critical quality.


Author(s):  
Anand P. Roday ◽  
Michael K. Jensen

The critical heat flux (CHF) condition sets an upper limit on the flow-boiling heat transfer process. With the growing demand for the use of two-phase flow in micro and nano-sized devices, there is a strong need to understand the CHF phenomenon in channels of such small dimensions. This study experimentally investigates the critical heat flux condition during flow boiling in a single stainless steel microtube of two different diameters—0.427mm, and 0.286 mm. Degassed water is the working fluid. The effects of various parameters—diameter, mass flux (350–1500 kg/m2s), inlet subcooling (2°C–50°C), and length-to-diameter ratio (75–200) on the CHF condition are studied for the exit condition being nearly atmospheric pressure. The CHF increases with an increase in mass flux. The effect of the inlet subcooling on the CHF condition is more complex. With a decreasing inlet subcooling, the CHF decreases until saturated liquid is reached; thereafter, the CHF increases with quality.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
YanFeng Fan ◽  
Ibrahim Hassan

Flow boiling heat transfer in a horizontal microtube with inlet restriction (orifice) under uniform heating condition is experimentally investigated using FC-72 as working fluid. A stainless steel microtube with an inner diameter of 889 μm is selected as main microtube. Two microtubes with smaller diameters are assembled at the inlet of main microtube to achieve the restriction ratios of 50% and 20%. The experimental measurement is carried out at mass fluxes ranging from 160 to 870 kg/m2·s, heat fluxes varying from 6 to 170 kW/m2, inlet temperatures of 23 and 35 °C, and saturation pressures of 10 and 45 kPa. The effects of the orifices on two-phase pressure drop, critical heat flux (CHF), and flow boiling heat transfer coefficient are studied. The results show that the pressure drop caused by the orifice takes a considerable portion in the total pressure drop at low mass fluxes. This ratio decreases as the vapor quality or mass flux increases. The difference of normal critical heat flux in the microtubes with different orifice sizes is negligible. In the aspect of flow boiling heat transfer, the orifice is able to enhance the heat transfer at low mass flux and high saturation pressure, which indicates the contribution of orifice in the nucleate boiling dominated regime. However, the effect of orifice on flow boiling heat transfer is negligible in the forced convective boiling dominated regime.


Author(s):  
Bao Truong ◽  
Lin-wen Hu ◽  
Jacopo Buongiorno ◽  
Thomas McKrell

Nanofluids are engineered colloidal dispersions of nano-sized particle in common base fluids. Previous pool boiling studies have shown that nanofluids can improve critical heat flux (CHF) up to 200% for pool boiling and up to 50% for subcooled flow boiling due to the boiling induced nanoparticle deposition on the heated surface. Motivated by the significant CHF enhancement of nanoparticle deposited surface, this study investigated experimentally the subcooled flow boiling heat transfer of pre-coated test sections in water. Using a separate coating loop, stainless steel test sections were treated via flow boiling of alumina nanofluids at constant heat flux and mass flow rate. The pre-coated test sections were then used in another loop to measure subcooled flow boiling heat transfer coefficient and CHF with water. The CHF values for the pre-coated tubing were found on average to be 28% higher than bare tubing at high mass flux G = 2500 kg/m2 s. However, no enhancement was found at lower mass flux G = 1500 kg/m2 s. The heat transfer coefficients did not differ much between experiments when the bare or coated tubes were used. SEM images of the test sections confirm the presence of a nanoparticle coating layer. The nanoparticle deposition is sporadic and no relationship between the coating pattern and the amount of CHF enhancement is observed.


Author(s):  
Sung Joong Kim ◽  
Tom McKrell ◽  
Jacopo Buongiorno ◽  
Lin-Wen Hu

Nanofluids are known as dispersions of nano-scale particles in solvents. Recent reviews of pool boiling experiments using nanofluids have shown that they have greatly enhanced critical heat flux (CHF). In many practical heat transfer applications, however, it is flow boiling that is of particular importance. Therefore, an experimental study was performed to verify whether or not a nanofluid can indeed enhance the CHF in the flow boiling condition. The nanofluid used in this work was a dispersion of aluminum oxide particles in water at very low concentration (≤0.1 v%). CHF was measured in a flow loop with a stainless steel grade 316 tubular test section of 5.54 mm inner diameter and 100 mm long. The test section was designed to provide a maximum heat flux of about 9.0 MW/m2, delivered by two direct current power supplies connected in parallel. More than 40 tests were conducted at three different mass fluxes of 1,500, 2,000, and 2,500 kg/m2sec while the fluid outlet temperature was limited not to exceed the saturation temperature at 0.1 MPa. The experimental results show that the CHF could be enhanced by as much as 45%. Additionally, surface inspection using Scanning Electron Microscopy reveals that the surface morphology of the test heater has been altered during the nanofluid boiling, which, in turn, provides valuable clues for explaining the CHF enhancement.


Author(s):  
Y. Wang ◽  
K. H. Deng ◽  
J. M. Wu ◽  
N. N. Yue ◽  
Y. F. Zan ◽  
...  

Nanofluid has been attracted great attention since it was proposed as a preeminent working fluid. Flow boiling is familiar in heat transfer system and the critical heat flux is a key parameter for the design of thermal hydraulic. In present work, the critical heat flux of nanofluid flow boiling is experimentally investigated in a vertical tube with the consideration of outlet pressure, mass flux, inlet subcooling, heating length and diameter. The results indicate that the critical heat flux of nanofluid flow boiling is enhanced compared with base fluid and the increasing radio is increased with increasing the mass flux, diameter and pressure, and with decreasing the heating length. In addition, the inlet subcooling and concentrations (0.1vol.%, 0.5vol.%) have almost no significant influence. Furthermore, a new mechanism for the enhancement of nanofluid flow boiling critical heat flux was proposed by the SEM images of nanopariticle deposition on the heating surface.


Author(s):  
Christoph Haas ◽  
Leonhard Meyer ◽  
Thomas Schulenberg

We investigated the critical heat flux (CHF) for flow boiling of water in a vertical annulus. The coaxial annulus has a diameter ratio of 1.37 and the inner zircaloy tube is heated directly over a length of 325 mm. CHF can occur prematurely due to flow instabilities. Therefore, we analyzed the flow stability at different heat input conditions using two types of pumps, a rotary and a gear type pump. The unstable CHF occurred at 61% and 90% of the stable value for the rotary and the gear type pump, respectively. Consequently, the following CHF experiments were conducted at stable flow conditions. The outlet pressure was constant at 120 kPa, the mass flux varied from 250 to 1000 kg/(m2s) and the inlet subcooling was at 102, 167, and 250 kJ/kg. The CHF results increase with mass flux from 0.67 to 2.62 MW/m2 and show similar trends compared to literature data. However, the experimental data for flow boiling in annuli at low pressure are limited. Additionally, we measured the dynamic contact angle between the zircaloy tube surface and water using the Wilhelmy method.


2017 ◽  
Vol 9 (2) ◽  
pp. 168781401668902 ◽  
Author(s):  
Ben-Ran Fu ◽  
Shan-Yu Chung ◽  
Wei-Jen Lin ◽  
Lei Wang ◽  
Chin Pan

A heat sink with convective boiling in micro- or mini-channels is with great potential to meet the requirement of the high heat dissipation of the electronic devices. This study investigates the flow boiling of HFE-7100, having a suitable boiling temperature at atmospheric pressure and dielectric property, in the minichannel heat sink with the modified surface (namely, the saw-tooth structure). The effect of the system pressure on the boiling characteristics was also studied. The results reveal that the critical heat flux can be significantly improved by introducing the saw-tooth structures on the channel surface or boosting the system pressure as well as by increasing the mass flux. Compared to the non-modified channel, the enhancements of the critical heat flux for the parallel and counter saw-tooth channels are 44% and 36%, respectively, at the small mass flux. The boiling visualization further indicates that the minichannels with the saw-tooth structures interrupt the boundary layer and restrain the coalescence of the bubble, which may be the reason for the critical heat flux enhancement. Moreover, the degree of the critical heat flux enhancement, contributed by the saw-tooth modification of the channel, decreases with an increase in the mass flux.


Sign in / Sign up

Export Citation Format

Share Document