Numerical Evaluation of High-Order Modes for Stepped Beam

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Wei Xu ◽  
Maosen Cao ◽  
Qingwen Ren ◽  
Zhongqing Su

The numerical evaluation of high-order modes of a uniform Euler–Bernoulli beam has been studied by reformatting the classical expression of mode shapes. That method, however, is inapplicable to a stepped beam due to the nonuniform expressions of the mode shape for each beam segment. Given that concern, this study develops an alternative method for the numerical evaluation of high-order modes for stepped beams. This method effectively expands the space of high-order modal solutions by introducing local coordinate systems to replace the conventional global coordinate system. This set of local coordinate systems can significantly simplify the frequency determinant of vibration equations of a stepped beam, in turn, largely eliminating numerical round-off errors and conducive to high-order mode evaluation. The efficacy of the proposed scheme is validated using various models of Euler–Bernoulli stepped beams. The principle of the method has the potential for extension to other types of Euler–Bernoulli beams with discontinuities in material and geometry. (The Matlab code for the numerical evaluation of high-order modes for stepped beams can be provided by the corresponding author upon request.)

2012 ◽  
Vol 160 ◽  
pp. 292-296
Author(s):  
Qi Bo Mao ◽  
Yan Ping Nie ◽  
Wei Zhang

The free vibrations of a stepped Euler-Bernoulli beam are investigated by using the Adomian decomposition method (ADM). The stepped beam consists two uniform sections and each section is considered a substructure which can be modeled using ADM. By using boundary condition and continuity condition equations, the dimensionless natural frequencies and corresponding mode shapes can be easily obtained simultaneously. The computed results for different boundary conditions are presented. Comparing the results using ADM to those given in the literature, excellent agreement is achieved.


2015 ◽  
Vol 15 (02) ◽  
pp. 1450040 ◽  
Author(s):  
Seyed Mojtaba Hozhabrossadati ◽  
Ahmad Aftabi Sani ◽  
Masood Mofid

This technical note addresses the free vibration problem of an elastically restrained Euler–Bernoulli beam with rotational spring-lumped rotary inertia system at its mid-span hinge. The governing differential equations and the boundary conditions of the beam are presented. Special attention is directed toward the conditions of the intermediate spring-mass system which plays a key role in the solution. Sample frequency parameters of the beam system are solved and tabulated. Mode shapes of the beam are also plotted for some spring stiffnesses.


2020 ◽  
Vol 20 (04) ◽  
pp. 2050049
Author(s):  
Qi Li ◽  
Xing Li ◽  
Qi Wu

Cantilever plate structures are widely used in civil and aerospace engineering. Here, a semi-analytical method is proposed to calculate the dynamic responses of cantilever plates subjected to moving forces. The Rayleigh–Ritz method is used to obtain the semi-analytical modal frequencies and shapes of a thin, isotropic, and rectangular cantilever plate using the assumed mode shapes that fulfill the boundary conditions of the plate. The modal superposition method is used to decouple the motion equations of the cantilever plate to obtain a series of modal equations. Then, the generalized forces are transformed into a Fourier series in terms of discrete harmonic forces. The dynamic responses of the cantilever plate are obtained by superimposing the analytical responses of a number of single-degree-of-freedom modal systems under discrete harmonic forces. The proposed semi-analytical method is verified through comparison with the numerical method. Then, the vibration of the cantilever plate under the action of moving forces is investigated based on the semi-analytical results. It is found that the contribution of the high-order modes to the dynamic responses of the plate cannot be ignored. In addition, the wavelengths of the mode shapes not only affect the magnitude of the modal forces but also the dominant frequency of the modal forces. Resonant responses of the plate are produced by the moving forces when the load interval equals the wavelength of the mode shape of a high-order mode and the exciting frequency of the moving forces equals the natural frequency of this mode.


Author(s):  
Henrik C. Pedersen ◽  
Torben O. Andersen ◽  
Brian K. Nielsen

When modeling flexible robots and structures for control purposes, most often the assumed modes (AMs) method is used to describe the deformation in combination with a floating reference frame formulation. This typically has the benefit of obtaining a low-order, but accurate model of the flexible structure, if the number of modes and AMs are properly chosen. The basis for using this method is, however, that the vibrations (deflections) are time and position independent, i.e., the expression is separable in space and time. This holds for the classic Euler–Bernoulli beam equation, but essentially does not hold for translational links. Hence, special care has to be taken when including flexible translational links. In the current paper, different methods for modeling a hydraulic loader crane with a telescopic arm are investigated and compared using both the finite segment (FS) and AMs method. The translational links are approximated by a single beam, respectively, multiple beam elements, with both one and two modes and using different mode shapes. The models are all validated against experimental data and the comparison is made for different operating scenarios. Based on the results, it is found that in most cases a single beam, low mode order approximation is sufficient to accurately model the mechanical structure and this yields similar results as the FS method.


Robotica ◽  
2014 ◽  
Vol 34 (1) ◽  
pp. 71-97 ◽  
Author(s):  
Mahdi Sharifnia ◽  
Alireza Akbarzadeh

SUMMARYIn this research, using an approximate analytical method, vibration analysis of a 3-PRP (active prismatic—P, passive revolute—R, passive prismatic—P) planar parallel robot having a flexible moving platform is presented. A specific architecture of the 3-PRP parallel robot, also known as the ST (Star-Triangle) parallel robot, is considered. The moving platform of the robot, called the star, is assumed to be made of three flexible beams shaped like a star. For analytical modeling, each of the three beams of the star is assumed to be a discrete Euler–Bernoulli beam with a passive prismatic joint. Continuity equations at the center of the star are used to relate vibrations of the three beams. The vibration behavior of each beam is modeled using previously developed constrained motion equations for a planar Euler–Bernoulli beam having a prismatic joint. In this paper, previously presented “constrained assumed modes method” is further developed to solve the constrained motion equation for the ST parallel robot. The solution method is used to obtain the vibration of the robot for the inverse dynamics problem and simultaneously provides generalized constraint forces. Furthermore, the solution method can be used for the direct dynamics problem of the ST robot. Several input trajectories are considered to investigate the different behavior for the center of the star. For each of the trajectories, three different groups of mode shapes are considered and their vibrational responses are compared. In this research, for the first time, effects of the passive prismatic joint parameters such as mass, rotational moment of inertia, and its actual length are considered in an analytical model. Finally, the analytical solution and a FEM (Finite Element Method) software solution are compared.


2012 ◽  
Vol 157-158 ◽  
pp. 476-483
Author(s):  
Zhi Feng Liu ◽  
Chun Hua Guo ◽  
Li Gang Cai ◽  
Wen Tong Yang ◽  
Zhi Min Zhang

In this paper, we compare the Differential transformation method and Adomian decomposition method to solve Euler-Bernoulli Beam vibration problems. The natural frequencies and mode shapes of the clamped-free uniform Euler-Bernoulli equation are calculated using the two methods. The Adomian decomposition method avoids the difficulties and massive computational work inherent in Differential transformation method by determining the very rapidly convergent analytic solutions directly. We found the solution between the two methods to be quite close. According to calculation of eigenvalues, natural frequencies and mode shapes, we compare the convergence of Differential transformation method and Adomian decomposition method. The two methods can be alternative ways to solve linear and nonlinear higher-order initial value problems.


2003 ◽  
Vol 9 (11) ◽  
pp. 1221-1229 ◽  
Author(s):  
Ali H Nayfeh ◽  
S.A. Emam ◽  
Sergio Preidikman ◽  
D.T. Mook

We investigate the free vibrations of a flexible beam undergoing an overall two-dimensional motion. The beam is modeled using the Euler-Bernoulli beam theory. An exact solution for the natural frequencies and corresponding mode shapes of the beam is obtained. The model can be extended to beams undergoing three-dimensional motions.


2015 ◽  
Vol 4 (2) ◽  
pp. 369 ◽  
Author(s):  
Adil El baroudi ◽  
Fulgence Razafimahery

In the present paper, an analytical method is developed to investigate the effects of added mass on natural frequencies and mode shapes of Euler-Bernoulli beams carrying concentrated masse at arbitrary position submerged in a fluid media. A fixed-fixed beams carrying concentrated masse vibrating in a fluid is modeled using the Bernoulli-Euler equation for the beams and the acoustic equation for the fluid. The symbolic software Mathematica is used in order to find the coupled vibration frequencies of a beams with two portions. The frequency equation is deduced and analytically solved. The finite element method using Comsol Multiphysics software results are compared with present method for validation and an acceptable match between them were obtained. In the eigenanalysis, the frequency equation is generated by satisfying all boundary conditions. It is shown that the present formulation is an appropriate and new approach to tackle the problem with good accuracy.


Sign in / Sign up

Export Citation Format

Share Document