Constrained Design Optimization of Vibration Energy Harvesting Devices

2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Mehdi Hendijanizadeh ◽  
Mohamed Moshrefi-Torbati ◽  
Suleiman M. Sharkh

Existing design criteria for vibration energy harvesting systems provide guidance on the appropriate selection of the seismic mass and load resistance. To harvest maximum power in resonant devices, the mass needs to be as large as possible and the load resistance needs to be equal to the sum of the internal resistance of the generator and the mechanical damping equivalent resistance. However, it is shown in this paper that these rules produce suboptimum results for applications where there is a constraint on the relative displacement of the seismic mass, which is often the case. When the displacement is constrained, increasing the mass beyond a certain limit reduces the amount of harvested power. The optimum load resistance in this case is shown to be equal to the generator's internal resistance. These criteria are extended to those devices that harvest energy from a low-frequency vibration by utilizing an interface that transforms the input motion to higher frequencies. For such cases, the optimum load resistance and the corresponding transmission ratio are derived.

2018 ◽  
Vol 231 ◽  
pp. 600-614 ◽  
Author(s):  
Yipeng Wu ◽  
Jinhao Qiu ◽  
Shengpeng Zhou ◽  
Hongli Ji ◽  
Yang Chen ◽  
...  

2006 ◽  
Vol 23 (3) ◽  
pp. 732-734 ◽  
Author(s):  
Fang Hua-Bin ◽  
Liu Jing-Quan ◽  
Xu Zheng-Yi ◽  
Dong Lu ◽  
Chen Di ◽  
...  

2018 ◽  
Vol 5 (1) ◽  
pp. 015510 ◽  
Author(s):  
Ying Yuan ◽  
Hulin Zhang ◽  
Jie Wang ◽  
Yuhang Xie ◽  
Saeed Ahmed Khan ◽  
...  

2019 ◽  
Vol 87 (4) ◽  
Author(s):  
Hamed Farokhi ◽  
Alireza Gholipour ◽  
Mergen H. Ghayesh

Abstract This paper presents complete nonlinear electromechanical models for energy harvesting devices consisting of multiple piezoelectric bimorphs (PBs) connected in parallel and series, for the first time. The proposed model is verified against available experimental results for a specific case. The piezoelectric and beam constitutive equations and different circuit equations are utilized to derive the complete nonlinear models for series and parallel connections of the PBs as well as those of piezoelectric layers in each bimorph, i.e., four nonlinear models in total. A multi-modal Galerkin approach is used to discretize these nonlinear electromechanical models. The resultant high-dimensional set of equations is solved utilizing a highly optimized and efficient numerical continuation code. Examining the system behavior shows that the optimum load resistance for an energy harvester array of 4 PBs connected in parallel is almost 4% of that for the case with PBs connected in series. It is shown an energy harvesting array of 8 PBs could reach a bandwidth of 14 Hz in low frequency range, i.e., 20–34 Hz. Compared with an energy harvester with 1 PB, it is shown that the bandwidth can be increased by more than 300% using 4 PBs and by more than 500% using 8 PBs. Additionally, the drawbacks of a multi-PB energy harvesting device are identified and design enhancements are proposed to improve the efficiency of the device.


2012 ◽  
Vol 23 (13) ◽  
pp. 1433-1449 ◽  
Author(s):  
Lihua Tang ◽  
Yaowen Yang ◽  
Chee-Kiong Soh

In recent years, several strategies have been proposed to improve the functionality of energy harvesters under broadband vibrations, but they only improve the efficiency of energy harvesting under limited conditions. In this work, a comprehensive experimental study is conducted to investigate the use of magnets for improving the functionality of energy harvesters under various vibration scenarios. First, the nonlinearities introduced by magnets are exploited to improve the performance of vibration energy harvesting. Both monostable and bistable configurations are investigated under sinusoidal and random vibrations with various excitation levels. The optimal nonlinear configuration (in terms of distance between magnets) is determined to be near the monostable-to-bistable transition region. Results show that both monostable and bistable nonlinear configurations can significantly outperform the linear harvester near this transition region. Second, for ultra-low-frequency vibration scenarios such as wave heave motions, a frequency up-conversion mechanism using magnets is proposed. By parametric study, the repulsive configuration of magnets is found preferable in the frequency up-conversion technique, which is efficient and insensitive to various wave conditions when the magnets are placed sufficiently close. These findings could serve as useful design guidelines when nonlinearity or frequency up-conversion techniques are employed to improve the functionality of vibration energy harvesters.


2015 ◽  
Vol 757 ◽  
pp. 171-174
Author(s):  
Kai Zhou ◽  
Fang Xie ◽  
Yi Tao ◽  
Hai Xia Du

Ambient energy harvesting has been in recent years the recurring object of a number of research efforts aimed at providing an autonomous solution to the powering of small scale electronic mobile devices. Among the different solutions, vibration energy harvesting has played a major role due to the almost universal presence of mechanical vibrations. In the paper, a piezoelectric cantilever device for harvesting the ambient low-frequency vibration energy is designed, and influences of its structure on output voltage and power generation capacity are studied also. The study results show that the piezoelectric cantilever can produce enough power energy which meets the operation requirements of sensors in wireless networks. It provides a method and corresponding theoretical basis for the harvesting of ambient low-frequency vibration energy and the design of self-supply devices for sensors in wireless networks.


Sign in / Sign up

Export Citation Format

Share Document