Flexible Multibody Modeling of a Surgical Instrument Inside an Endoscope

Author(s):  
Jitendra P. Khatait ◽  
Dannis M. Brouwer ◽  
J. P. Meijaard ◽  
Ronald G. K. M. Aarts ◽  
Just L. Herder

The implementation of flexible instruments in surgery necessitates high motion and force fidelity and good controllability of the tip. However, the positional accuracy and the force transmission of these instruments are jeopardized by the friction, the clearance, and the inherent compliance of the instrument. The surgical instrument is modeled as a series of interconnected spatial beam elements. The endoscope is modeled as a rigid curved tube. The stiffness, damping, and friction are defined in order to calculate the interaction between the instrument and the tube. The effects of various parameters on the motion and force transmission behavior were studied for the axially-loaded and no-load cases. The simulation results showed a deviation of 1.8% in the estimation of input force compared with the analytical capstan equation. The experimental results showed a deviation on the order of 1.0%. The developed flexible multibody model is able to demonstrate the characteristic behavior of the flexible instrument for both the translational and rotational input motion for a given set of parameters. The developed model will help us to study the effects of various parameters on the motion and force transmission of the instrument.

Author(s):  
J. P. Khatait ◽  
D. M. Brouwer ◽  
J. P. Meijaard ◽  
R. G. K. M. Aarts ◽  
J. L. Herder

Modern surgical procedures involve flexible instruments for both diagnostic and therapeutic purposes. The implementation of flexible instruments in surgery necessitates high motion and force fidelity, and good controllability of the tip. However, the positional accuracy and the force transmission of these instruments are jeopardized by the friction and clearance inside the endoscope, and the compliance of the instrument. The objective of this paper is to set up a 3-D flexible multibody model for a surgical instrument inside an endoscope to study its translational and rotational behavior. The 3-D model incorporates all the deformations—axial, torsion, and bending—due to its interaction with the surroundings. The interaction due to the contact is defined along the normal and tangential direction at the contact point. The wall stiffness and damping are defined in the normal direction. Friction is defined along the tangential direction. The calculation of the interaction force and moment is explained with an example. Various simulations were performed to study the behavior of the instrument inside a curved rigid tube. The simulations for the insertion into a 3-D tube defined in a plane were compared for both 2-D and 3-D model. The simulation results from the 3-D model give the same results as the 2-D model. A simulation was carried out for the insertion in a 3-D tube using the 3-D model and the total interaction force on the instrument was analyzed. A 3-D multibody model was set up for the simulation offline rotation. A motion hysteresis of 5° was observed for the chosen configuration. The 3-D multibody model is able to demonstrate the characteristic behavior of the flexible instrument under different scenarios. Both translational and rotational behavior of the instrument can be characterized for the given set of parameters. The developed model will help us to study the effect of various parameters on the motion and force transmission of the instrument.


2013 ◽  
Vol 7 (3) ◽  
Author(s):  
Jitendra P. Khatait ◽  
Dannis M. Brouwer ◽  
Herman M. J. R. Soemers ◽  
Ronald G. K. M. Aarts ◽  
Just L. Herder

The success of flexible instruments in surgery requires high motion and force fidelity and controllability of the tip. However, the friction and the limited stiffness of such instruments limit the motion and force transmission of the instrument. In a previous study, we developed a flexible multibody model of a surgical instrument inside an endoscope in order to study the effect of the friction, bending and rotational stiffness of the instrument and clearance on the motion hysteresis and the force transmission. In this paper, we present the design and evaluation of an experimental setup for the validation of the flexible multibody model and the characterization of the instruments. A modular design was conceived based on three key functionalities: the actuation from the proximal end, the displacement measurement of the distal end, and the measurement of the interaction force. The exactly constrained actuation module achieves independent translation and rotation of the proximal end. The axial displacement and the rotation of the distal end are measured contactless via a specifically designed air bearing guided cam through laser displacement sensors. The errors in the static measurement are 15 μm in translation and 0.15 deg in rotation. Six 1-DOF load cell modules using flexures measure the interaction forces and moments with an error of 0.8% and 2.5%, respectively. The achieved specifications allow for the measurement of the characteristic behavior of the instrument inside a curved rigid tube and the validation of the flexible multibody model.


Author(s):  
Jitendra P. Khatait ◽  
Dannis M. Brouwer ◽  
Ronald G. K. M. Aarts ◽  
Just L. Herder

Flexible instruments are increasingly used to carry out surgical procedures. The instrument tip is remotely controlled by the surgeon. The flexibility of the instrument and the friction inside the curved endoscope jeopardize the control of the instrument tip. Characterization of the surgical instrument behavior enables the control of the tip motion. A flexible multibody modeling approach was used to study the sliding behavior of the instrument inside a curved endoscope. The surgical instrument was modeled as a series of interconnected planar beam elements. The curved endoscope was modeled as a rigid curved tube. A static friction-based contact model was implemented. The simulations were carried out both for the insertion of the flexible instrument and for fine manipulation. A computer program (SPACAR) was used for the modeling and simulation. The simulation result shows the stick-slip behavior and the motion hysteresis because of the friction. The coefficient of friction has a large influence on the motion hysteresis, whereas the bending rigidity of the instrument has little influence.


Author(s):  
Jan Helsen ◽  
Klaas Vanslambrouck ◽  
Frederik Vanhollebeke ◽  
Wim Desmet

The continuous demand for increase in power output for new wind parks under strict cost constraints, the greater wind resource at elevation and the desire for fewer machines per Mega-Watt to reduce operations resulted in a demand for bigger turbines. The drive train is an important component in realizing reliable and robust wind turbines. This paper investigates a geared wind turbine. In this type a gearbox is used to convert the low rotor speed to the required high generator speed. In the market several solutions are available to constrain the gearbox in the nacelle. The used configuration significantly determines the gearbox response to rotor loads and the transmission of gearbox vibrations to the turbine. This paper investigates the effectiveness of three configurations: the three point mounting, the double bearing configuration and the hydraulic damper system. The flexible multibody modeling technique can be used to accurately characterize gearbox dynamics. The goal of this work is to use an experimentally validated multibody model of a wind turbine drive train to characterize the ability of the three configurations to minimize the introduction of non-torque loads in the gearbox and the ability to isolate the gearbox vibrations from the rest of the turbine.


Robotica ◽  
2013 ◽  
Vol 31 (8) ◽  
pp. 1209-1220
Author(s):  
Emiliano Mucchi ◽  
Stefano Fiorati ◽  
Raffaele Di Gregorio ◽  
Giorgio Dalpiaz

SUMMARYThis work presents the experimental validation and updating of a flexible multibody model ideated for taking into account installation conditions of industrial serial planar manipulators without resorting to cumbersome modeling. The flexibility of the frame, the manipulator is fixed, is modeled over the flexibility of joints, which is introduced as lumped stiffness. In particular, the flexible frame is included in the model by using the Component Mode Synthesis methodology, in which only the natural modes of vibration and the static constrain modes are accounted. The flexible multibody model has been developed because these commercial machines are mainly used to perform low-speed tasks, and they are designed by taking into account their flexibility at most in the joints. Unfortunately, there are particular installation conditions in which even low-speed tasks can generate low-frequency vibrations that highly interfere with the task. This aspect is considered here, and how to manage this problem is explained by using the developed multibody model. The model is validated through experimental measurements. The experimental tests consist of several modal analyses, together with acceleration and laser Doppler measurements in operational conditions. This methodology takes into account the installation conditions through the model of flexible frame, and gives a tool for studying ad hoc solutions which prevent the occurrence of unwanted low-frequency vibrations.


2015 ◽  
Vol 9 (1) ◽  
Author(s):  
Jitendra P. Khatait ◽  
Dannis M. Brouwer ◽  
Ronald G. K. M. Aarts ◽  
Just L. Herder

The force transmission of a flexible instrument through an endoscope is considerably deteriorated due to friction between the contacting surfaces. Friction force along the axial direction can be reduced by combining the translational motion input with rotation. A ratio ζ is defined to measure the reduction in the friction force along the axial direction due to the combined motion input at the proximal end of the instrument. An analytical formula is derived that shows the reduction in the friction force for the combined motion input. A flexible multibody model was setup and various simulations were performed with different motion inputs. The simulation result showed a reduction of 80% in the value of ζ in accordance with the analytical result for the given velocity ratio. Several experiments were performed with constant translational motion input combined with constant and sinusoidal rotational motion input. A maximum reduction of 84% is obtained in the value of ζ against a reduction of 89% calculated analytically. The knowledge of force transmission with a combination of motions can be used to increase the force fidelity of a flexible instrument in applications like robotic surgery with a flexible instrument.


Author(s):  
Bart Blockmans ◽  
Jan Helsen ◽  
Frederik Vanhollebeke ◽  
Wim Desmet

High turbine reliability is of utmost importance to keep the cost of wind energy to a minimum. A considerable problem in this regard is that of premature drivetrain failures, which have plagued the wind turbine industry since its inception. Accurate prediction of the loads encountered by the drivetrain components during their lifetime is essential for reliable wind turbine design. Of particular interest are transient load events, which are expected to have a detrimental effect on the lifetime of drivetrain components, especially when they give rise to torque reversals. At the electrical side of the wind turbine, transient events worth investigating include grid faults, emergency stops and grid loss. Unlike previous research on the impact of these events, which typically uses simplified gearbox representations, this paper investigates the dynamic behavior of wind turbine drivetrains during grid faults using a coupled simulation of a flexible multibody model of a commercial multimegawatt wind turbine drivetrain and a Simulink model of a doubly fed induction generator (DFIG) and its controller. The mathematical modeling of the DFIG as well as the flexible multibody modeling of the drivetrain are described. Both gear and bearing forces on several components of the gearbox are examined during a symmetrical and asymmetrical voltage dip, and the influence of gearbox flexibility on these loads is assessed.


2009 ◽  
Vol 37 (1) ◽  
pp. 15-30 ◽  
Author(s):  
S. M. Oliveri ◽  
G. Sequenzia ◽  
M. Calì

Author(s):  
Stefano Fiorati ◽  
Emiliano Mucchi ◽  
Raffaele Di Gregorio ◽  
Giorgio Dalpiaz

Serial planar manipulators are diffusely used either as stand-alone machines or as part of more complex cells, and many commercial planar manipulators are available on the market. These commercial machines are mainly destined to accomplish low-speed tasks, and they are designed by taking into account their flexibility at most in the joints. Unfortunately, there are particular installation conditions in which even low-speed tasks can generate low-frequency vibrations that highly interfere with the task. This aspect is highlighted here with reference to a commercial 3R planar manipulator, and how to manage this problem is explained. In this sight, a flexible multibody model is developed where the flexibility of the frame, the manipulator is fixed to, is modeled over the flexibility of the joints, that is introduced as lumped stiffness. In particular, the flexible frame is included in the model by using a Component Mode Synthesis methodology, in which only the natural modes of vibration and the static constrain modes are accounted. The model is validated through an experimental campaign. The experimental tests consist of several modal analyses, together with acceleration and laser Doppler measurements in operational conditions. This methodology allows to provide a model which takes into account the installation conditions, and gives a tool for studying ad-hoc solutions which prevent the occurrence of low-frequency vibrations.


Sign in / Sign up

Export Citation Format

Share Document