Characterization of Ultrasonic Metal Welding by Correlating Online Sensor Signals With Weld Attributes

Author(s):  
S. Shawn Lee ◽  
Chenhui Shao ◽  
Tae Hyung Kim ◽  
S. Jack Hu ◽  
Elijah Kannatey-Asibu ◽  
...  

Online process monitoring in ultrasonic welding of automotive lithium-ion batteries is essential for robust and reliable battery pack assembly. Effective quality monitoring algorithms have been developed to identify out of control parts by applying purely statistical classification methods. However, such methods do not provide the deep physical understanding of the manufacturing process that is necessary to provide diagnostic capability when the process is out of control. The purpose of this study is to determine the physical correlation between ultrasonic welding signal features and the ultrasonic welding process conditions and ultimately joint performance. A deep understanding in these relationships will enable a significant reduction in production launch time and cost, improve process design for ultrasonic welding, and reduce operational downtime through advanced diagnostic methods. In this study, the fundamental physics behind the ultrasonic welding process is investigated using two process signals, weld power and horn displacement. Several online features are identified by examining those signals and their variations under abnormal process conditions. The joint quality is predicted by correlating such online features to weld attributes such as bond density and postweld thickness that directly impact the weld performance. This study provides a guideline for feature selection and advanced diagnostics to achieve a reliable online quality monitoring system in ultrasonic metal welding.

2014 ◽  
Author(s):  
S. Shawn Lee ◽  
Chenhui Shao ◽  
Tae Hyung Kim ◽  
S. Jack Hu ◽  
Elijah Kannatey-Asibu ◽  
...  

Online process monitoring in ultrasonic welding of automotive lithium-ion batteries is essential for robust and reliable battery pack assembly. Effective quality monitoring algorithms have been developed to identify out of control parts by applying purely statistical classification methods. However, such methods do not provide the deep physical understanding of the manufacturing process that is necessary to provide diagnostic capability when the process is out of control. The purpose of this study is to determine the physical correlation between ultrasonic welding signal features and the ultrasonic welding process conditions and ultimately joint performance. A deep understanding in these relationships will enable a significant reduction in production launch time and cost, improve process design for ultrasonic welding, and reduce operational downtime through advanced diagnostic methods. In this study, the fundamental physics behind the ultrasonic welding process is investigated using two process signals, weld power and horn displacement. Several online features are identified by examining those signals and their variations under abnormal process conditions. The joint quality is predicted by correlating such online features to weld attributes such as bond density and post-weld thickness that directly impact the weld performance. This study provides a guideline for feature selection and advanced diagnostics to achieve a reliable online quality monitoring system in ultrasonic metal welding.


Author(s):  
Shailendra Yadav ◽  
Charalabos Doumanidis

This paper addresses a novel non-thermal Ultrasonic Rapid Manufacturing (URM), for layered parts based on Ultrasonic Metal Welding (USW). Its laboratory implementation, automation and integration are described first. The thermo-mechanical process aspects (i.e. heat generation and resulting temperature effects) during each cycle of ultrasonic welding are then studied. The technical advantages of ultrasonic welding process, including fabrication of dense, full-strength functional solid metal parts, multi-material composites, and active parts with embedded intelligent components and electronic, mechatronic, optic and fluidic structures, are examined.


Author(s):  
Bongsu Kang ◽  
Wayne Cai ◽  
Chin-An Tan

Ultrasonic metal welding for battery tabs must be performed with 100% reliability in battery pack manufacturing as the failure of a single weld essentially results in a battery that is inoperative or cannot deliver the required power due to the electrical short caused by the failed weld. In ultrasonic metal welding processes, high-frequency ultrasonic energy is used to generate an oscillating shear force (sonotrode force) at the interface between a sonotrode and few metal sheets to produce solid-state bonds between the sheets clamped under a normal force. These forces, which influence the power needed to produce the weld and the weld quality, strongly depend on the mechanical and structural properties of the weld parts and fixtures in addition to various welding process parameters such as weld frequencies and amplitudes. In this work, the effect of structural vibration of the battery tab on the required sonotrode force during ultrasonic welding is studied by applying a longitudinal vibration model for the battery tab. It is found that the sonotrode force is greatly influenced by the kinetic properties, quantified by the equivalent mass and equivalent stiffness, of the battery tab and cell pouch interface. This study provides a fundamental understanding of battery tab dynamics during ultrasonic welding and its effects on weld quality, and thus provides useful guidelines for design and welding of battery tabs from tab dynamics point of view.


Author(s):  
S. Shawn Lee ◽  
Tae H. Kim ◽  
S. Jack Hu ◽  
Wayne W. Cai ◽  
Jingjing Li ◽  
...  

Manufacturing of lithium-ion battery packs for electric or hybrid electric vehicles requires a significant amount of joining such as welding to meet desired power and capacity needs. However, conventional fusion welding processes such as resistance spot welding and laser welding face difficulties in joining multiple sheets of highly conductive, dissimilar materials with large weld areas. Ultrasonic metal welding overcomes these difficulties by using its inherent advantages derived from its solid-state process characteristics. Although ultrasonic metal welding is well-qualified for battery manufacturing, there is a lack of scientific quality guidelines for implementing ultrasonic welding in volume production. In order to establish such quality guidelines, this paper first identifies a number of critical weld attributes that determine the quality of welds by experimentally characterizing the weld formation over time. Samples of different weld quality were cross-sectioned and characterized with optical microscopy, scanning electronic microscopy (SEM), and hardness measurements in order to identify the relationship between physical weld attributes and weld performance. A novel microstructural classification method for the weld region of an ultrasonic metal weld is introduced to complete the weld quality characterization. The methodology provided in this paper links process parameters to weld performance through physical weld attributes.


Author(s):  
S. Shawn Lee ◽  
Tae Hyung Kim ◽  
S. Jack Hu ◽  
Wayne W. Cai ◽  
Jeffrey A. Abell ◽  
...  

Manufacturing of lithium-ion battery packs for electric or hybrid electric vehicles requires a significant amount of joining, such as welding, to meet the desired power and capacity needs. However, conventional fusion welding processes, such as resistance spot welding and laser welding, face difficulties in joining multiple sheets of highly conductive, dissimilar materials to create large weld areas. Ultrasonic metal welding overcomes these difficulties by using its inherent advantages derived from its solid-state process characteristics. Although ultrasonic metal welding is well-qualified for battery manufacturing, there is a lack of scientific quality guidelines for implementing ultrasonic welding in volume production. In order to establish such quality guidelines, this paper first identifies a number of critical weld attributes that determine the quality of welds by experimentally characterizing the weld formation over time using copper-to-copper welding as an example. Samples of different weld quality were cross-sectioned and characterized with optical microscopy, scanning electronic microscopy (SEM), and hardness measurements in order to identify the relationship between physical weld attributes and weld performance. A novel microstructural classification method for the weld region of an ultrasonic metal weld is introduced to complete the weld quality characterization. The methodology provided in this paper links process parameters to weld performance through physical weld attributes.


2020 ◽  
Vol 978 ◽  
pp. 463-469
Author(s):  
Soumyajit Das ◽  
Mantra Prasad Satpathy ◽  
Bharat Chandra Routara ◽  
Susanta Kumar Sahoo

Energy crisis poses a major challenge in the modern industrial scenario. A critical aspect of the shop floor work includes the welding of dissimilar metal sheets which require the right amount of energy. In order to tackle these challenges, a conservative and energy efficient method are necessary. Recently, automotive industries have been widely adopted the ultrasonic metal welding process for assembling lithium-ion battery packs and its modules. The joining of these dissimilar metals using any other conventional welding process is extremely challenging due to varying physical, chemical, thermal properties, the formation of the heat affected zone and lesser bond strength. However, ultrasonic metal welding yields better quality welds under the influence of optimal parametric conditions. In this research, the weld quality of two dissimilar materials, namely, aluminum (AA1060) with cupronickel (C71500) sheets investigated at different welding time, vibration amplitudes and welding pressures with a fixed ultrasonic frequency of 20 kHz. Experimental results show the tensile shear strength of the weld is maximum at the highest vibration amplitude with a moderate amount of weld pressure and weld time. Additionally, the joint quality and its associated microstructure at the weld region are analyzed by scanning electron microscopy (SEM) to reveal the bond strength with the interlocking feature.


Author(s):  
Bongsu Kang ◽  
Wayne Cai ◽  
Chin-An Tan

Ultrasonic metal welding (USMW) for battery tabs must be performed with 100% reliability in battery pack manufacturing as the failure of a single weld essentially results in a battery that is inoperative or cannot deliver the required power due to the electrical short caused by the failed weld. In ultrasonic metal welding processes, high-frequency ultrasonic energy is used to generate an oscillating shear force (sonotrode force) at the interface between a sonotrode and few metal sheets to produce solid-state bonds between the sheets clamped under a normal force. These forces, which influence the power needed to produce the weld and the weld quality, strongly depend on the mechanical and structural properties of the weld parts and fixtures in addition to various welding process parameters, such as weld frequencies and amplitudes. In this work, the effect of structural vibration of the battery tab on the required sonotrode force during ultrasonic welding is studied by applying a longitudinal vibration model for the battery tab. It is found that the sonotrode force is greatly influenced by the kinetic properties, quantified by the equivalent mass, equivalent stiffness, and equivalent viscous damping, of the battery tab and cell pouch interface. This study provides a fundamental understanding of battery tab dynamics during ultrasonic welding and its effect on weld quality, and thus provides a guideline for design and welding of battery tabs from tab dynamics point of view.


Author(s):  
Xinhua Shi ◽  
Lin Li ◽  
Suiran Yu ◽  
Lingxiang Yun

Abstract Ultrasonic metal welding is one of the key technologies in manufacturing lithium batteries, and the welding quality directly determines the battery performance. Therefore, an online welding process monitoring system is critical in identifying abnormal welding processes, detecting defects, and improving battery quality. Traditionally, the peak welding power is used to indicate abnormal process signals in welding process monitoring systems. However, since various factors have complex impacts on the electric power signals of ultrasonic welding processes, the peak power is inadequate to detect different types of welding defects. Therefore, a signal pattern matching method is proposed in this study, which is based on the electric power signal during the entire welding process and thus is capable of identifying abnormal welding processes in various conditions. The proposed method adopts isometric transformation and homogenization as signal pretreatment methods, and Euclidean distance is used to calculate the similarity metric for signal matching. The effectiveness and robustness of the proposed method are experimentally validated under different abnormal welding conditions.


Author(s):  
Chenhui Shao ◽  
Tae Hyung Kim ◽  
S. Jack Hu ◽  
Jionghua (Judy) Jin ◽  
Jeffrey A. Abell ◽  
...  

This paper presents a tool wear monitoring framework for ultrasonic metal welding which has been used for lithium-ion battery manufacturing. Tool wear has a significant impact on joining quality. In addition, tool replacement, including horns and anvils, constitutes an important part of production costs. Therefore, a tool condition monitoring (TCM) system is highly desirable for ultrasonic metal welding. However, it is very challenging to develop a TCM system due to the complexity of tool surface geometry and a lack of thorough understanding on the wear mechanism. Here, we first characterize tool wear progression by comparing surface measurements obtained at different stages of tool wear, and then develop a tool condition classification algorithm to identify the state of wear. The developed algorithm is validated using tool measurement data from a battery plant.


Author(s):  
Weihong (Grace) Guo ◽  
Jionghua (Judy) Jin ◽  
S. Jack Hu

Sensor signals acquired during the manufacturing process contain rich information that can be used to facilitate effective monitoring of operational quality, early detection of system anomalies, and quick diagnosis of fault root causes. This paper develops a method for effective monitoring and diagnosis of multisensor heterogeneous profile data based on multilinear discriminant analysis. The proposed method operates directly on the multistream profiles and then extracts uncorrelated discriminative features through tensor-to-vector projection, and thus, preserving the interrelationship of different sensors. The extracted features are then fed into classifiers to detect faulty operations and recognize fault types. The developed method is demonstrated with both simulated and real data from ultrasonic metal welding.


Sign in / Sign up

Export Citation Format

Share Document