Entropy Generation Analysis of a Chemical Absorption Process Where Carbon Dioxide is Absorbed by Falling Monoethanolamine Solution Film

2014 ◽  
Vol 136 (12) ◽  
Author(s):  
Imen Chermiti ◽  
Nejib Hidouri ◽  
Ammar Ben Brahim

The present paper reports a study about entropy generation analysis for the case of chemical absorption of a gas into laminar falling liquid film. The CO2 absorption into monoethanolamine (MEA) aqueous solutions has been considered. Temperature and concentration expressions are determined by using Laplace transform and used for the entropy generation calculation. The effects of irreversibilities due to heat transfer, mass transfer, viscous effects, coupling effects between heat and mass transfer, and chemical reaction on the total entropy generation of the considered system are derived. The obtained results show that entropy generation is mainly due to chemical reaction irreversibility at the gas–liquid interface. Between this interface and the reaction film thickness (where the reaction take place), entropy generation is due to both chemical reaction and mass transfer irreversibilities. More details concerning the contribution of each kind of irreversibility to entropy generation through the falling film are graphically presented and discussed.

2016 ◽  
Vol 13 (1) ◽  
pp. 53
Author(s):  
Siti Nabihah Jamaludin ◽  
Ruzitah Mohd Salleh

Anthropogenic CO2 emissions has led to global climate change and widely contributed to global warming since its concentration has been increasing over time. It has attracted vast attention worldwide. Currently, the different CO2 capture technologies available include absorption, solid adsorption and membrane separation. Chemical absorption technology is regarded as the most mature technology and is commercially used in the industry. However, the key challenge is to find the most efficient solvent in capturing CO2. This paper reviews several types of CO2 capture technologies and the various factors influencing the CO2 absorption process, resulting in the development of a novel solvent for CO2 capture.


Author(s):  
L. Y. Zhang ◽  
Y. Li ◽  
Y. Wang ◽  
L. X. Cao ◽  
X. Z. Meng

Absorber is an important component in absorption refrigerating system. Its performance plays a significant role on the overall efficiency of absorption refrigerating system. The nanofluids which can enhance the heat and mass transfer will be utilized to absorber for enhancing the water vapor absorption process and improving the absorber efficiency. The software CFD-FLUENT is used to analyze the falling film absorption process of the nanofluids, which consists of H2O/LiBr solution with Fe3O4 nanoparticles in this paper. The results indicate that the enhancing heat and mass transfer of nanofluids is related to the nanoparticle concentration and size. The stronger the nanoparticle concentration, the greater enhancement of heat and mass transfer of falling film; while the smaller the nanoparticle size, the greater enhancement of heat and mass transfer of falling film. It is also found that the enhancement ratio of heat and mass transfer flux reach 1.48 and 1.37, respectively, as the Fe3O4 nanoparticles mass concentration of 0.01wt% and the size of 50nm.


2018 ◽  
Vol 194 ◽  
pp. 01007
Author(s):  
Maria V. Bartashevich

Mathematical model of conjugated heat and mass transfer in absorption on the entrance region of the semi-infinite liquid film of lithium bromide water solution is investigated for different values of Froude number. The calculations shown that larger values of Froude number corresponds to a smaller thickness of the falling film. It was demonstrated that for large values of the Froude number the heat transfer from the surface is greater than for smaller values.


Author(s):  
Saeid Jani ◽  
Mohamad H. Saidi ◽  
Ali Heydari ◽  
Ali A. Mozaffari

The objective of this paper is to provide optimization of falling film Li/Br solution on a horizontal single tube based on minimization of entropy generation. Flow regime is considered to be laminar, the effect of boiling has been ignored and wall temperature is constant. Velocity, temperature and concentration distributions are numerically determined and dimensionless correlations are obtained for predicting the average heat transfer coefficient and average evaporation factor on the horizontal tube. Thermodynamic imperfection due to passing lithium bromide solution is attributed to non-isothermal heat transfer; fluid flow friction and mass transfer irreversibility. Scale analysis shows that the momentum and mass transfer irreversibilities can be ignored at the expense of heat transfer irreversibility. In the process of optimization, for a specified evaporation heat flux, the entropy generation along with the developed heat and mass transfer dimensionless correlations is minimized and the optimal geometry and the optimum thermal hydraulic parameters are revealed. The investigation cited here indicates the promise of entropy generation minimization as an efficient design and optimized tool.


Sign in / Sign up

Export Citation Format

Share Document