Flameholding Tendencies of Natural Gas and Hydrogen Flames at Gas Turbine Premixer Conditions

Author(s):  
Elliot Sullivan-Lewis ◽  
Vince McDonell

Ground-based gas turbines are responsible for generating a significant amount of electric power as well as providing mechanical power for a variety of applications. This is due to their high efficiency, high power density, high reliability, and ability to operate on a wide range of fuels. Due to increasingly stringent air quality requirements, stationary power gas turbines have moved to lean-premixed operation. Lean-premixed operation maintains low combustion temperatures for a given turbine inlet temperature, resulting in low NOx emissions while minimizing emissions of CO and hydrocarbons. In addition, to increase overall cycle efficiency, engines are being operated at higher pressure ratios and/or higher combustor inlet temperatures. Increasing combustor inlet temperatures and pressures in combination with lean-premixed operation leads to increased reactivity of the fuel/air mixture, leading to increased risk of potentially damaging flashback. Curtailing flashback on engines operated on hydrocarbon fuels requires care in design of the premixer. Curtailing flashback becomes more challenging when fuels with reactive components such as hydrogen are considered. Such fuels are gaining interest because they can be generated from both conventional and renewable sources and can be blended with natural gas as a means for storage of renewably generated hydrogen. The two main approaches for coping with flashback are either to design a combustor that is resistant to flashback, or to design one that will not anchor a flame if a flashback occurs. An experiment was constructed to determine the flameholding tendencies of various fuels on typical features found in premixer passage ways (spokes, steps, etc.) at conditions representative of a gas turbine premixer passage way. In the present work, tests were conducted for natural gas and hydrogen between 3 and 9 atm, between 530 K and 650 K, and free stream velocities from 40 to 100 m/s. Features considered in the present study include a spoke in the center of the channel and a step at the wall. The results are used in conjunction with existing blowoff correlations to evaluate flameholding propensity of these physical features over the range of conditions studied. The results illustrate that correlations that collapse data obtained at atmospheric pressure do not capture trends observed for spoke and wall step features at elevated pressure conditions. Also, a notable fuel compositional effect is observed.

Author(s):  
Elliot Sullivan-Lewis ◽  
Vincent McDonell

Ground based gas turbines are responsible for generating a significant amount of electric power as well as providing mechanical power for a variety of applications. This is due to their high efficiency, high power density, high reliability, and ability to operate on a wide range of fuels. Due to increasingly stringent air quality requirements, stationary power gas turbines have moved to lean-premixed operation. Lean-premixed operation maintains low combustion temperatures for a given turbine inlet temperature, resulting in low NOx emissions while minimizing emissions of CO and hydrocarbons. In addition, to increase overall cycle efficiency, engines are being operated at higher pressure ratios and/or higher combustor inlet temperatures. Increasing combustor inlet temperatures and pressures in combination with lean-premixed operation leads to increased reactivity of the fuel/air mixture, leading to increased risk of potentially damaging flashback. Curtailing flashback on engines operated on hydrocarbon fuels requires care in design of the premixer. Curtailing flashback becomes more challenging when fuels with reactive components such as hydrogen are considered. Such fuels are gaining interest because they can be generated from both conventional and renewable sources and can be blended with natural gas as a means for storage of renewably generated hydrogen. The two main approaches for coping with flashback are either to design a combustor that is resistant to flashback, or to design one that will not anchor a flame if a flashback occurs. An experiment was constructed to determine the flameholding tendencies of various fuels on typical features found in premixer passage ways (spokes, steps, etc.) at conditions representative of a gas turbine premixer passage way. In the present work tests were conducted for natural gas and hydrogen between 3 and 9 atm, between 530 K and 650K, and free stream velocities from 40 to 100 m/s. Features considered in the present study include a spoke in the center of the channel and a step at the wall. The results are used in conjunction with existing blowoff correlations to evaluate flameholding propensity of these physical features over the range of conditions studied. The results illustrate that correlations that collapse data obtained at atmospheric pressure do not capture trends observed for spoke and wall step features at elevated pressure conditions. Also, a notable fuel compositional effect is observed.


Author(s):  
Mircea Fetescu

The High Efficiency-Coal and Gas (HE-C&G) is a hybrid power plant concept integrating Conventional Steam Power Plants (CSPP) and gas turbine / combined cycle plants. The gas turbine exhaust gas energy is recovered in the HRSG providing partial condensate and feedwater preheating and generating steam corresponding to the main boiler live steam conditions (second steam source for the ST). The concept, exhibiting very high design flexibility, integrates the high performance Sequential Combustion gas turbines GT24/GT26 technology into a wide range of existing or new CSPP. Although HE-C&G refers to coal as the most abundant fossil fuel resource, oil or natural gas fired steam plants could be also designed or converted following the same principle. The HE-C&G provides very high marginal efficiencies on natural gas, up to and above 60%, very high operating and dispatching flexibility and on-line optimization of fuel and O&M costs at low capital investment. This paper emphasizes the operating flexibility and resulting benefits, recommending the HE-C&G as one of the most profitable options for generating power especially for conversion of existing CSPP with gas turbines.


Author(s):  
Stefan Bauer ◽  
Balbina Hampel ◽  
Thomas Sattelmayer

Abstract Vortex generators are known to be effective in augmenting the mixing of fuel jets with air. The configuration investigated in this study is a tubular air passage with fuel injection from one single orifice placed in the side wall. In the range of typical gas turbine combustor inlet temperatures, the performance vortex generator premixers (VGPs) have already been investigated for natural gas as well as for blends of natural gas and hydrogen. However, for highly reactive fuels, the application of VGPs in recuperated gas turbines is particularly challenging because the high combustor inlet temperature leads to potential risk with regard to premature self-ignition and flame flashback. As the current knowledge does not cover the temperature range far above the self-ignition temperature, an experimental investigation of the operational limits of VGPs is currently being conducted at the Thermodynamics Institute of the Technical University of Munich, Garching, Germany, which is particularly focused on reactive fuels and the thermodynamic conditions present in recuperated gas turbines with pressure ratios of 4–5. For the study presented in this paper, an atmospheric combustion VGP test rig has been designed, which facilitates investigations in a wide range of operating conditions in order to comply with the situation in recuperated microgas turbines (MGT), namely, global equivalence ratios between 0.2 and 0.7, air preheating temperatures between 288 K and 1100 K, and air bulk flow rates between 6 and 16 g/s. Both the entire mixing zone in the VGP and the primary combustion zone of the test rig are optically accessible. High-speed OH* chemiluminescence imaging is used for the detection of the flashback and blow-off limits of the investigated VGPs. Flashback and blow-off limits of hydrogen in a wide temperature range covering the autoignition regime are presented, addressing the influences of equivalence ratio, air preheating temperature, and momentum ratio between air and hydrogen on the operational limits in terms of bulk flow velocity. It is shown that flashback and blow-off limits are increasingly influenced by autoignition in the ultrahigh temperature regime.


Author(s):  
Shigeru Hayashi ◽  
Hideshi Yamada ◽  
Kazuo Shimodaira

The development of a variable geometry lean-premixed combustor is in progress at NAL. Engine testing has been cooducted by using a natural gas-fueled 210-kW gas turbine to demonstrate the capability of ultra-low NOx emissions over a wide range of eogine operation. This paper describes the effort of engine testing of the combustor to achieve NOx emissions of the 10-ppm level. Fuel was staged to the non-premixed pilot and premixed main burners. A butterfly valve air splitting system was employed to maintain both low NOx emissions and high efficieocy over a wide operating range of the engine. The engioe was operated in the lean-premixed, low NOx emissions mode from idle to full power. Over the whole operating conditions from idle to full power, NOx emissions were reduced to levels less than 25 ppm (15% O2 dry). The NOx emissions level for a nearly constant combustion efficiency decreased with increasing power or turbine inlet temperature. At operating conditions of 90% to full power, NOx emissions levels of 12 to 8 ppm (15% O2 dry) were measured with combustion efficiencies of 99.7 to 99.1%.


Author(s):  
Matti Malkamäki ◽  
Ahti Jaatinen-Värri ◽  
Antti Uusitalo ◽  
Aki Grönman ◽  
Juha Honkatukia ◽  
...  

Decentralized electricity and heat production is a rising trend in small-scale industry. There is a tendency towards more distributed power generation. The decentralized power generation is also pushed forward by the policymakers. Reciprocating engines and gas turbines have an essential role in the global decentralized energy markets and improvements in their electrical efficiency have a substantial impact from the environmental and economic viewpoints. This paper introduces an intercooled and recuperated three stage, three-shaft gas turbine concept in 850 kW electric output range. The gas turbine is optimized for a realistic combination of the turbomachinery efficiencies, the turbine inlet temperature, the compressor specific speeds, the recuperation rate and the pressure ratio. The new gas turbine design is a natural development of the earlier two-spool gas turbine construction and it competes with the efficiencies achieved both with similar size reciprocating engines and large industrial gas turbines used in heat and power generation all over the world and manufactured in large production series. This paper presents a small-scale gas turbine process, which has a simulated electrical efficiency of 48% as well as thermal efficiency of 51% and can compete with reciprocating engines in terms of electrical efficiency at nominal and partial load conditions.


Author(s):  
Valentina Zaccaria ◽  
Mario L. Ferrari ◽  
Konstantinos Kyprianidis

Abstract Microgas turbine (MGT) engines in the range of 1–100 kW are playing a key role in distributed generation applications, due to the high reliability and quick load following that favor their integration with intermittent renewable sources. Micro-combined heat and power (CHP) systems based on gas turbine technology are obtaining a higher share in the market and are aiming at reducing the costs and increasing energy conversion efficiency. An effective control of system operating parameters during the whole engine lifetime is essential to maintain desired performance and at the same time guarantee safe operations. Because of the necessity to reduce the costs, fewer sensors are usually available than in standard industrial gas turbines, limiting the choice of control parameters. This aspect is aggravated by engine aging and deterioration phenomena that change operating performance from the expected one. In this situation, a control architecture designed for healthy operations may not be adequate anymore, because the relationship between measured parameters and unmeasured variables (e.g., turbine inlet temperature (TIT) or efficiency) varies depending on the level of engine deterioration. In this work, an adaptive control scheme is proposed to compensate the effects of engine degradation over the lifetime. Component degradation level is monitored by a diagnostic tool that estimates performance variations from the available measurements; then, the information on the gas turbine health condition is used by an observer-based model predictive controller to maintain the machine in a safe range of operation and limit the reduction in system efficiency.


Author(s):  
J. E. Donald Gauthier

This paper describes the results of modelling the performance of several indirectly fired gas turbine (IFGT) power generation system configurations based on four gas turbine class sizes, namely 5 kW, 50 kW, 5 MW and 100 MW. These class sizes were selected to cover a wide range of installations in residential, commercial, industrial and large utility power generation installations. Because the IFGT configurations modelled consist of a gas turbine engine, one or two recuperators and a furnace; for comparison purpose this study also included simulations of simple cycle and recuperated gas turbine engines. Part-load, synchronous-speed simulations were carried out with generic compressor and turbine maps scaled for each engine design point conditions. The turbine inlet temperature (TIT) was varied from the design specification to a practical value for a metallic high-temperature heat exchanger in an IFGT system. As expected, the results showed that the reduced TIT can have dramatic impact on the power output and thermal efficiency when compared to that in conventional gas turbines. However, the simulations also indicated that several configurations can lead to higher performance, even with the reduced TIT. Although the focus of the study is on evaluation of thermodynamic performance, the implications of varying configurations on cost and durability are also discussed.


Author(s):  
Candy Hernandez ◽  
Vincent McDonell

Abstract Lean-premixed (LPM) gas turbines have been developed for stationary power generation in efforts to reduce emissions due to strict air quality standards. Lean-premixed operation is beneficial as it reduces combustor temperatures, thus decreasing NOx formation and unburned hydrocarbons. However, tradeoffs occur between system performance and turbine emissions. Efforts to minimize tradeoffs between stability and emissions include the addition of hydrogen to natural gas, a common fuel used in stationary gas turbines. The addition of hydrogen is promising for both increasing combustor stability and further reducing emissions because of its wide flammability limits allowing for lower temperature operation, and lack of carbon molecules. Other efforts to increase gas turbine stability include the usage of a non-lean pilot flame to assist in stabilizing the main flame. By varying fuel composition for both the main and piloted flows of a gas turbine combustor, the effect of hydrogen addition on performance and emissions can be systematically evaluated. In the present work, computational fluid dynamics (CFD) and chemical reactor networks (CRN) are created to evaluate stability (LBO) and emissions of a gas turbine combustor by utilizing fuel and flow rate conditions from former hydrogen and natural gas experimental results. With CFD and CRN analysis, the optimization of parameters between fuel composition and main/pilot flow splits can provide feedback for minimizing pollutants while increasing stability limits. The results from both the gas turbine model and former experimental results can guide future gas turbine operation and design.


Author(s):  
Reiner Anton ◽  
Brigitte Heinecke ◽  
Michael Ott ◽  
Rolf Wilkenhoener

The availability and reliability of gas turbine units are critical for success to gas turbine users. Advanced hot gas path components that are used in state-of-the-art gas turbines have to ensure high efficiency, but require advanced technologies for assessment during maintenance inspections in order to decide whether they should be reused or replaced. Furthermore, advanced repair and refurbishment technologies are vital due to the complex nature of such components (e.g., Directionally Solidified (DS) / Single Crystal (SC) materials, thin wall components, new cooling techniques). Advanced repair technologies are essential to allow cost effective refurbishing while maintaining high reliability, to ensure minimum life cycle cost. This paper will discuss some aspects of Siemens development and implementation of advanced technologies for repair and refurbishment. In particular, the following technologies used by Siemens will be addressed: • Weld restoration; • Braze restoration processes; • Coating; • Re-opening of cooling holes.


Author(s):  
Julie McGraw ◽  
Reiner Anton ◽  
Christian Ba¨hr ◽  
Mary Chiozza

In order to promote high efficiency combined with high power output, reliability, and availability, Siemens advanced gas turbines are equipped with state-of-the-art turbine blades and hot gas path parts. These parts embody the latest developments in base materials (single crystal and directionally solidified), as well as complex cooling arrangements (round and shaped holes) and coating systems. A modern gas turbine blade (or other hot gas path part) is a duplex component consisting of base material and coating system. Planned recoating and repair intervals are established as part of the blade design. Advanced repair technologies are essential to allow cost-effective refurbishing while maintaining high reliability. This paper gives an overview of the operating experience and key technologies used to repair these parts.


Sign in / Sign up

Export Citation Format

Share Document