Adaptive Control of Microgas Turbine for Engine Degradation Compensation

Author(s):  
Valentina Zaccaria ◽  
Mario L. Ferrari ◽  
Konstantinos Kyprianidis

Abstract Microgas turbine (MGT) engines in the range of 1–100 kW are playing a key role in distributed generation applications, due to the high reliability and quick load following that favor their integration with intermittent renewable sources. Micro-combined heat and power (CHP) systems based on gas turbine technology are obtaining a higher share in the market and are aiming at reducing the costs and increasing energy conversion efficiency. An effective control of system operating parameters during the whole engine lifetime is essential to maintain desired performance and at the same time guarantee safe operations. Because of the necessity to reduce the costs, fewer sensors are usually available than in standard industrial gas turbines, limiting the choice of control parameters. This aspect is aggravated by engine aging and deterioration phenomena that change operating performance from the expected one. In this situation, a control architecture designed for healthy operations may not be adequate anymore, because the relationship between measured parameters and unmeasured variables (e.g., turbine inlet temperature (TIT) or efficiency) varies depending on the level of engine deterioration. In this work, an adaptive control scheme is proposed to compensate the effects of engine degradation over the lifetime. Component degradation level is monitored by a diagnostic tool that estimates performance variations from the available measurements; then, the information on the gas turbine health condition is used by an observer-based model predictive controller to maintain the machine in a safe range of operation and limit the reduction in system efficiency.

Author(s):  
Valentina Zaccaria ◽  
Mario L. Ferrari ◽  
Konstantinos Kyprianidis

Abstract Micro gas turbine engines in the range of 1–100 kW are playing a key role in distributed generation applications, due to the high reliability and quick load following that favor their integration with intermittent renewable sources. Micro-CHP systems based on gas turbine technology are obtaining a higher share in the market and are aiming at reducing the costs and increasing energy conversion efficiency. An effective control of system operating parameters during the whole engine lifetime is essential to maintain desired performance and at the same time guarantee safe operations. Because of the necessity to reduce the costs, fewer sensors are usually available than in standard industrial gas turbines, limiting the choice of control parameters. This aspect is aggravated by engine aging and deterioration phenomena that change operating performance from the expected one. In this situation, a control architecture designed for healthy operations may not be adequate anymore, because the relationship between measured parameters and unmeasured variables (e.g. turbine inlet temperature or efficiency) varies depending on the level of engine deterioration. In this work, an adaptive control scheme is proposed to compensate the effects of engine degradation over the lifetime. Component degradation level is monitored by a diagnostic tool that estimates performance variations from available measurements; then, the information on the gas turbine health condition is used by an observer-based model predictive controller to maintain the machine in a safe range of operation and limit the reduction in system efficiency.


Author(s):  
Meng Hee Lim ◽  
Salman Leong ◽  
Kar Hoou Hui

This paper presents a case study in managing the dilemma of whether to resume or stop the operation of a power generation gas turbine with suspected blade faults. Vibration analysis is undertaken on the vibration signal of the gas turbine, to obtain an insight into the health condition of the blades before any decision is made on the operation of the machine. Statistical analysis is applied to study the characteristics of the highly unstable blade pass frequency (BPF) of the gas turbine and to establish the baseline data used for blade fault assessment and diagnosis. Based on the excessive increase observed on specific BPF amplitudes in comparison to the statistical baseline data, rubbing at the compressor blade is suspected. An immediate overhaul is therefore warranted, and the results from the inspection of the machine confirm the occurrence of severe rubbing at the compressor blades and labyrinth glands of the gas turbine. In conclusion, statistical analysis of BPF amplitude is found to be a viable tool for blade fault diagnosis in industrial gas turbines.


Author(s):  
Elliot Sullivan-Lewis ◽  
Vincent McDonell

Ground based gas turbines are responsible for generating a significant amount of electric power as well as providing mechanical power for a variety of applications. This is due to their high efficiency, high power density, high reliability, and ability to operate on a wide range of fuels. Due to increasingly stringent air quality requirements, stationary power gas turbines have moved to lean-premixed operation. Lean-premixed operation maintains low combustion temperatures for a given turbine inlet temperature, resulting in low NOx emissions while minimizing emissions of CO and hydrocarbons. In addition, to increase overall cycle efficiency, engines are being operated at higher pressure ratios and/or higher combustor inlet temperatures. Increasing combustor inlet temperatures and pressures in combination with lean-premixed operation leads to increased reactivity of the fuel/air mixture, leading to increased risk of potentially damaging flashback. Curtailing flashback on engines operated on hydrocarbon fuels requires care in design of the premixer. Curtailing flashback becomes more challenging when fuels with reactive components such as hydrogen are considered. Such fuels are gaining interest because they can be generated from both conventional and renewable sources and can be blended with natural gas as a means for storage of renewably generated hydrogen. The two main approaches for coping with flashback are either to design a combustor that is resistant to flashback, or to design one that will not anchor a flame if a flashback occurs. An experiment was constructed to determine the flameholding tendencies of various fuels on typical features found in premixer passage ways (spokes, steps, etc.) at conditions representative of a gas turbine premixer passage way. In the present work tests were conducted for natural gas and hydrogen between 3 and 9 atm, between 530 K and 650K, and free stream velocities from 40 to 100 m/s. Features considered in the present study include a spoke in the center of the channel and a step at the wall. The results are used in conjunction with existing blowoff correlations to evaluate flameholding propensity of these physical features over the range of conditions studied. The results illustrate that correlations that collapse data obtained at atmospheric pressure do not capture trends observed for spoke and wall step features at elevated pressure conditions. Also, a notable fuel compositional effect is observed.


Author(s):  
Elliot Sullivan-Lewis ◽  
Vince McDonell

Ground-based gas turbines are responsible for generating a significant amount of electric power as well as providing mechanical power for a variety of applications. This is due to their high efficiency, high power density, high reliability, and ability to operate on a wide range of fuels. Due to increasingly stringent air quality requirements, stationary power gas turbines have moved to lean-premixed operation. Lean-premixed operation maintains low combustion temperatures for a given turbine inlet temperature, resulting in low NOx emissions while minimizing emissions of CO and hydrocarbons. In addition, to increase overall cycle efficiency, engines are being operated at higher pressure ratios and/or higher combustor inlet temperatures. Increasing combustor inlet temperatures and pressures in combination with lean-premixed operation leads to increased reactivity of the fuel/air mixture, leading to increased risk of potentially damaging flashback. Curtailing flashback on engines operated on hydrocarbon fuels requires care in design of the premixer. Curtailing flashback becomes more challenging when fuels with reactive components such as hydrogen are considered. Such fuels are gaining interest because they can be generated from both conventional and renewable sources and can be blended with natural gas as a means for storage of renewably generated hydrogen. The two main approaches for coping with flashback are either to design a combustor that is resistant to flashback, or to design one that will not anchor a flame if a flashback occurs. An experiment was constructed to determine the flameholding tendencies of various fuels on typical features found in premixer passage ways (spokes, steps, etc.) at conditions representative of a gas turbine premixer passage way. In the present work, tests were conducted for natural gas and hydrogen between 3 and 9 atm, between 530 K and 650 K, and free stream velocities from 40 to 100 m/s. Features considered in the present study include a spoke in the center of the channel and a step at the wall. The results are used in conjunction with existing blowoff correlations to evaluate flameholding propensity of these physical features over the range of conditions studied. The results illustrate that correlations that collapse data obtained at atmospheric pressure do not capture trends observed for spoke and wall step features at elevated pressure conditions. Also, a notable fuel compositional effect is observed.


Author(s):  
Keisuke Makino ◽  
Ken-Ichi Mizuno ◽  
Toru Shimamori

NGK Spark Plug Co., Ltd. has been developing various silicon nitride materials, and the technology for fabricating components for ceramic gas turbines (CGT) using theses materials. We are supplying silicon nitride material components for the project to develop 300 kW class CGT for co-generation in Japan. EC-152 was developed for components that require high strength at high temperature, such as turbine blades and turbine nozzles. In order to adapt the increasing of the turbine inlet temperature (TIT) up to 1,350 °C in accordance with the project goals, we developed two silicon nitride materials with further unproved properties: ST-1 and ST-2. ST-1 has a higher strength than EC-152 and is suitable for first stage turbine blades and power turbine blades. ST-2 has higher oxidation resistance than EC-152 and is suitable for power turbine nozzles. In this paper, we report on the properties of these materials, and present the results of evaluations of these materials when they are actually used for CGT components such as first stage turbine blades and power turbine nozzles.


2021 ◽  
Author(s):  
M. A. Ancona ◽  
M. Bianchi ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino ◽  
...  

Abstract Gas turbines are often employed in the industrial field, especially for remote generation, typically required by oil and gas production and transport facilities. The huge amount of discharged heat could be profitably recovered in bottoming cycles, producing electric power to help satisfying the onerous on-site energy demand. The present work aims at systematically evaluating thermodynamic performance of ORC and supercritical CO2 energy systems as bottomer cycles of different small/medium size industrial gas turbine models, with different power rating. The Thermoflex software, providing the GT PRO gas turbine library, has been used to model the machines performance. ORC and CO2 systems specifics have been chosen in line with industrial products, experience and technological limits. In the case of pure electric production, the results highlight that the ORC configuration shows the highest plant net electric efficiency. The average increment in the overall net electric efficiency is promising for both the configurations (7 and 11 percentage points, respectively if considering supercritical CO2 or ORC as bottoming solution). Concerning the cogenerative performance, the CO2 system exhibits at the same time higher electric efficiency and thermal efficiency, if compared to ORC system, being equal the installed topper gas turbine model. The ORC scarce performance is due to the high condensing pressure, imposed by the temperature required by the thermal user. CO2 configuration presents instead very good cogenerative performance with thermal efficiency comprehended between 35 % and 46 % and the PES value range between 10 % and 22 %. Finally, analyzing the relationship between capital cost and components size, it is estimated that the ORC configuration could introduce an economical saving with respect to the CO2 configuration.


Author(s):  
Bernhard Ćosić ◽  
Frank Reiss ◽  
Marc Blümer ◽  
Christian Frekers ◽  
Franklin Genin ◽  
...  

Abstract Industrial gas turbines like the MGT6000 are often operated as power supply or as mechanical drives. In these applications, liquid fuels like 'Diesel Fuel No.2' can be used either as main fuel or as backup fuel if natural gas is not reliably available. The MAN Gas Turbines (MGT) operate with the Advanced Can Combustion (ACC) system, which is capable of ultra-low NOx emissions for gaseous fuels. This system has been further developed to provide dry dual fuel capability. In the present paper, we describe the design and detailed experimental validation process of the liquid fuel injection, and its integration into the gas turbine package. A central lance with an integrated two-stage nozzle is employed as a liquid pilot stage, enabling ignition and start-up of the engine on liquid fuel only. The pilot stage is continuously operated, whereas the bulk of the liquid fuel is injected through the premixed combustor stage. The premixed stage comprises a set of four decentralized nozzles based on fluidic oscillator atomizers, wherein atomization of the liquid fuel is achieved through self-induced oscillations. We present results illustrating the spray, hydrodynamic, and emission performance of the injectors. Extensive testing of the burner at atmospheric and full load high-pressure conditions has been performed, before verification within full engine tests. We show the design of the fuel supply and distribution system. Finally, we discuss the integration of the dual fuel system into the standard gas turbine package of the MGT6000.


Author(s):  
Matti Malkamäki ◽  
Ahti Jaatinen-Värri ◽  
Antti Uusitalo ◽  
Aki Grönman ◽  
Juha Honkatukia ◽  
...  

Decentralized electricity and heat production is a rising trend in small-scale industry. There is a tendency towards more distributed power generation. The decentralized power generation is also pushed forward by the policymakers. Reciprocating engines and gas turbines have an essential role in the global decentralized energy markets and improvements in their electrical efficiency have a substantial impact from the environmental and economic viewpoints. This paper introduces an intercooled and recuperated three stage, three-shaft gas turbine concept in 850 kW electric output range. The gas turbine is optimized for a realistic combination of the turbomachinery efficiencies, the turbine inlet temperature, the compressor specific speeds, the recuperation rate and the pressure ratio. The new gas turbine design is a natural development of the earlier two-spool gas turbine construction and it competes with the efficiencies achieved both with similar size reciprocating engines and large industrial gas turbines used in heat and power generation all over the world and manufactured in large production series. This paper presents a small-scale gas turbine process, which has a simulated electrical efficiency of 48% as well as thermal efficiency of 51% and can compete with reciprocating engines in terms of electrical efficiency at nominal and partial load conditions.


Author(s):  
Daniel E. Caguiat

The Naval Surface Warfare Center, Carderock Division (NSWCCD) Gas Turbine Emerging Technologies Code 9334 was tasked by NSWCCD Shipboard Energy Office Code 859 to research and evaluate fouling resistant compressor coatings for Rolls Royce Allison 501-K Series gas turbines. The objective of these tests was to investigate the feasibility of reducing the rate of compressor fouling degradation and associated rate of specific fuel consumption (SFC) increase through the application of anti-fouling coatings. Code 9334 conducted a market investigation and selected coatings that best fit the test objective. The coatings selected were Sermalon for compressor stages 1 and 2 and Sermaflow S4000 for the remaining 12 compressor stages. Both coatings are manufactured by Sermatech International, are intended to substantially decrease blade surface roughness, have inert top layers, and contain an anti-corrosive aluminum-ceramic base coat. Sermalon contains a Polytetrafluoroethylene (PTFE) topcoat, a substance similar to Teflon, for added fouling resistance. Tests were conducted at the Philadelphia Land Based Engineering Site (LBES). Testing was first performed on the existing LBES 501-K17 gas turbine, which had a non-coated compressor. The compressor was then replaced by a coated compressor and the test was repeated. The test plan consisted of injecting a known amount of salt solution into the gas turbine inlet while gathering compressor performance degradation and fuel economy data for 0, 500, 1000, and 1250 KW generator load levels. This method facilitated a direct comparison of compressor degradation trends for the coated and non-coated compressors operating with the same turbine section, thereby reducing the number of variables involved. The collected data for turbine inlet, temperature, compressor efficiency, and fuel consumption were plotted as a percentage of the baseline conditions for each compressor. The results of each plot show a decrease in the rates of compressor degradation and SFC increase for the coated compressor compared to the non-coated compressor. Overall test results show that it is feasible to utilize anti-fouling compressor coatings to reduce the rate of specific fuel consumption increase associated with compressor performance degradation.


Author(s):  
Philip H. Snyder ◽  
M. Razi Nalim

Renewed interest in pressure gain combustion applied as a replacement of conventional combustors within gas turbine engines creates the potential for greatly increased capability engines in the marine power market segment. A limited analysis has been conducted to estimate the degree of improvements possible in engine thermal efficiency and specific work for a type of wave rotor device utilizing these principles. The analysis considers a realistic level of component losses. The features of this innovative technology are compared with those of more common incremental improvement types of technology for the purpose of assessing potentials for initial market entry within the marine gas turbine market. Both recuperation and non-recuperation cycles are analyzed. Specific fuel consumption improvements in excess of 35% over those of a Brayton cycle are indicated. The technology exhibits the greatest percentage potential in improving efficiency for engines utilizing relatively low or moderate mechanical compression pressure ratios. Specific work increases are indicated to be of an equally dramatic magnitude. The advantages of the pressure gain combustion approach are reviewed as well as its technology development status.


Sign in / Sign up

Export Citation Format

Share Document