Origami-Based Self-Folding Structure Design and Fabrication Using Projection Based Stereolithography

2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Dongping Deng ◽  
Yong Chen

Self-folding structures have unique capability such as reconfiguration during their usage. Such capability can be beneficial for a wide variety of applications including biomedical and electronics products. In this paper, a novel fabrication approach based on a three-dimensional (3D) printing process is presented for fabricating self-folding structures that can be actuated in a heating environment. The thermo-actuating structures that are designed and fabricated by our method are two-dimensional (2D) origami sheets, which have multiple printed layers. The middle layer of an origami sheet is a prestrained polystyrene film with large shrinkage ratios when heated. Both its top and bottom surfaces are covered with cured resin that is printed in designed shapes. A foldable hinge is achieved by constraining the shrinkage of the film on one side while allowing the shrinkage of the film on another side when the origami sheet is exposed to a heating environment. Heuristic models of hinge's folding angles are developed based on the related folding mechanism. A 2D origami sheet design and fabrication method is presented for a given 3D structure. Various experimental tests are performed to verify the self-folding performance of the designed and fabricated origami sheets. Techniques on improving folding angle control are also discussed with possible applications.

Author(s):  
Dongping Deng ◽  
Yong Chen

Self-folding structures have unique advantages such as reconfiguration capability during their usage. Such advantages can be beneficial for a wide variety of applications including biomedical and electronics products. However, how to fabricate and actuate self-folding structures is still an ongoing research topic. In the paper a simple fabrication approach based on a 3D printing process is presented for the fabrication of self-folding structures that can be actuated using a constrain-based thermo responsive mechanism. A self-folding structure fabricated by our method is an origami sheet with multiple layers. The middle layer of the origami sheet is a pre-strained polystyrene film, which can have a large shrinkage when exposing to heat. Both its upper and bottom surfaces are covered with desired patterns in cured plastic resin. A foldable hinge is achieved by using the cured resin to constrain the shrinkage of the film on one side while the other side of the film is exposed to the heating environment. A model of the related folding mechanism is developed. Based on it, a hinge structure design method is presented for a given folding angle. Various experiments are performed to verify the folding control of designed self-folding structures. Possible applications of the developed self-folding structures are also demonstrated and discussed.


Author(s):  
Dongping Deng ◽  
Yong Chen

Additive manufacturing (AM) process is widely used in fabricating three-dimensional (3D) models with complex internal features due to its flexibility and fast building speed. Inspired by the recent development of origami structures, we investigate a super-fast AM process for fabricating prototype models of hollow shapes. By combining the origami design and the additive manufacturing technology, a new fabrication process named Assembled Additive Manufacturing (AAM) is developed. A folding technique is used either during or after the layer-based fabrication process. By turning a 3D structure into a foldable two-dimensional (2D) structure, the fabrication speed is dramatically increased due to the decreased number of layers that is required in the building process. Detailed procedures of the AAM process such as unfolding algorithms of an input model, foldable structure design and folding mechanism are introduced in the paper. Experimental tests are also presented to illustrate the effective and efficiency of the AAM process.


2021 ◽  
Vol 11 (15) ◽  
pp. 6972
Author(s):  
Lihua Cui ◽  
Fei Ma ◽  
Tengfei Cai

The cavitation phenomenon of the self-resonating waterjet for the modulation of erosion characteristics is investigated in this paper. A three-dimensional computational fluid dynamics (CFD) model was developed to analyze the unsteady characteristics of the self-resonating jet. The numerical model employs the mixture two-phase model, coupling the realizable turbulence model and Schnerr–Sauer cavitation model. Collected data from experimental tests were used to validate the model. Results of numerical simulations and experimental data frequency bands obtained by the Fast Fourier transform (FFT) method were in very good agreement. For better understanding the physical phenomena, the velocity, the pressure distributions, and the cavitation characteristics were investigated. The obtained results show that the sudden change of the flow velocity at the outlet of the nozzle leads to the forms of the low-pressure zone. When the pressure at the low-pressure zone is lower than the vapor pressure, the cavitation occurs. The flow field structure of the waterjet can be directly perceived through simulation, which can provide theoretical support for realizing the modulation of the erosion characteristics, optimizing nozzle structure.


2016 ◽  
Vol 88 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Chaoyu Chen ◽  
Zhaoqun Du ◽  
Weidong Yu ◽  
Tilak Dias

The main content dealt with in the paper is to present a kind of weft-knitted spacer fabric with high porosity. It is a kind of three-dimensional textile fabric with a sandwich structure that consists of a middle layer of multifilament and two outer layers of plain-knitted fabric. Compared with traditional warp-knitted spacer fabric as cushion mats, weft-knitted spacer fabric is well used as apparel for good softness, thermal/moisture comfort, and air permeability. Therefore, three structures were designed and nine samples were prepared by choosing plain-knitted fabric as the outer layers and selecting soft and thin multifilament as a middle layer. Experimental results show that this kind of weft-knitted spacer fabrics has high porosity, greater than 86%, and also demonstrate that the weft-knitted spacer fabric is suitable for comfortable apparel based on experimental results of air permeability, compression properties, stiffness, and thermal insulation properties.


2019 ◽  
Vol 75 (4) ◽  
pp. 443-450
Author(s):  
Guiying Zhu ◽  
Yang Lu ◽  
Guoxia Jin ◽  
Xuan Ji ◽  
Jianping Ma

Three new one- (1D) and two-dimensional (2D) CuII coordination polymers, namely poly[[bis{μ2-4-amino-3-(pyridin-2-yl)-5-[(pyridin-3-ylmethyl)sulfanyl]-1,2,4-triazole}copper(II)] bis(methanesulfonate) tetrahydrate], {[Cu(C13H12N5S)2](CH3SO3)2·4H2O} n (1), catena-poly[[copper(II)-bis{μ2-4-amino-3-(pyridin-2-yl)-5-[(pyridin-4-ylmethyl)sulfanyl]-1,2,4-triazole}] dinitrate methanol disolvate], {[Cu(C13H12N5S)2](NO3)2·2CH3OH} n (2), and catena-poly[[copper(II)-bis{μ2-4-amino-3-(pyridin-2-yl)-5-[(pyridin-4-ylmethyl)sulfanyl]-1,2,4-triazole}] bis(perchlorate) monohydrate], {[Cu(C13H12N5S)2](ClO4)2·H2O} n (3), were obtained from 4-amino-3-(pyridin-2-yl)-5-[(pyridin-3-ylmethyl)sulfanyl]-1,2,4-triazole with pyridin-3-yl terminal groups and from 4-amino-3-(pyridin-2-yl)-5-[(pyridin-4-ylmethyl)sulfanyl]-1,2,4-triazole with pyridin-4-yl terminal groups. Compound 1 displays a 2D net-like structure. The 2D layers are further linked through hydrogen bonds between methanesulfonate anions and amino groups on the framework and guest H2O molecules in the lattice to form a three-dimensional (3D) structure. Compound 2 and 3 exhibit 1D chain structures, in which the complicated hydrogen-bonding interactions play an important role in the formation of the 3D network. These experimental results indicate that the coordination orientation of the heteroatoms on the ligands has a great influence on the polymeric structures. Moreover, the selection of different counter-anions, together with the inclusion of different guest solvent molecules, would also have a great effect on the hydrogen-bonding systems in the crystal structures.


2015 ◽  
Vol 137 (11) ◽  
Author(s):  
Tsz-Ho Kwok ◽  
Charlie C. L. Wang ◽  
Dongping Deng ◽  
Yunbo Zhang ◽  
Yong Chen

A self-folding structure fabricated by additive manufacturing (AM) can be automatically folded into a demanding three-dimensional (3D) shape by actuation mechanisms such as heating. However, 3D surfaces can only be fabricated by self-folding structures when they are flattenable. Most generally, designed parts are not flattenable. To address the problem, we develop a shape optimization method to modify a nonflattenable surface into flattenable. The shape optimization framework is equipped with topological operators for adding interior/boundary cuts to further improve the flattenability. When inserting cuts, self-intersection is locally prevented on the flattened two-dimensional (2D) pieces. The total length of inserted cuts is also minimized to reduce artifacts on the finally folded 3D shape.


2019 ◽  
Vol 24 (10) ◽  
pp. 3354-3377 ◽  
Author(s):  
Matko Ljulj ◽  
Josip Tambača

In this paper, we derive models for the interaction of a linearized three-dimensional elastic structure with a thin elastic layer of possibly different material attached to it. Rigorous derivation is performed by considering a thin three-dimensional layer and the asymptotics of the solution of the full remaining three-dimensional problem when the thickness [Formula: see text] of the thin layer tends to zero. Furthermore, the attached thin material is assumed to have the elasticity coefficients which are of order [Formula: see text], for [Formula: see text] with respect to the coefficients of the three-dimensional body. In the limit, five different models are obtained with respect to different choices of p, namely [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]. Furthermore a three-dimensional–two-dimensional model is proposed that has the same asymptotics as the original three-dimensional problem. This is convenient for applications because one does not have to decide in advance which limit model to use.


Soft Matter ◽  
2020 ◽  
Vol 16 (33) ◽  
pp. 7739-7750
Author(s):  
Mingchao Liu ◽  
Lucie Domino ◽  
Dominic Vella

Transforming flat two-dimensional (2D) sheets into three-dimensional (3D) structures by a combination of careful cutting and applied loads is an emerging manufacturing paradigm; we study how to design the cut pattern to obtain a desired 3D structure.


Langmuir ◽  
2013 ◽  
Vol 29 (15) ◽  
pp. 4796-4805 ◽  
Author(s):  
Carlos Rubia-Payá ◽  
Eugenio Jimenez-Millán ◽  
Juan J. Giner-Casares ◽  
Gerald Brezesinski ◽  
María T. Martín-Romero ◽  
...  

Author(s):  
Zhang Puyang ◽  
Hu Ruiqi ◽  
Ding Hongyan ◽  
Le Conghuan

An offshore integrated anemometer mast (OIAM) is proposed to integrate the offshore installation of the foundation and steel mast into one operation. It can be prefabricated onshore and transported to the installation site which is simple in construction, rapid in speed and saving in cost. The most critical technique of the OIAM is the self-floating towing technique with a reasonable subdivision inside the floating tank. These subdivisions of OIAM facilitate the floating stability in case the occurrence of a damaged compartment. The tank will be ballasted to lower OIAM down and to penetrate these shallow skirt plates underneath into the sea bed after a free-floating towing process. To study and predict the dynamic behaviors of the OIAM in different sea conditions considering different towing critical factors, the hydrodynamic software MOSES is used to simulate the three-dimensional motion of the OIAM in the towing operation. Before that the integrated installation technique is introduced in terms of structure design, towing operation, and sinking on-site. The numerical results show that multiple subdivisions guarantee an adequate floating stability, and the hydrodynamic features indicate that a relative small dynamic response in some extreme sea state can be obtained by this OIAM structure. The self-floating technique of OIAM in sea is highly competitive for saving cost by using less expensive equipment in towing transportation.


Sign in / Sign up

Export Citation Format

Share Document