New Deployable Structures Based on an Elastic Origami Model

2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Kazuya Saito ◽  
Akira Tsukahara ◽  
Yoji Okabe

Traditionally, origami-based structures are designed on the premise of “rigid folding,” However, every act of folding and unfolding is accompanied by elastic deformations in real structures. This study focuses on these elastic deformations in order to expand origami into a new method of designing morphing structures. The authors start by proposing a simple model for evaluating elastic deformation in nonrigid origami structures. Next, these methods are applied to deployable plate models. Initial strain is introduced into the elastic parts as actuators for deployment. Finally, by using the finite element method (FEM), it is confirmed that the proposed system can accomplish the complete deployment in 3 × 3 Miura-or model.

Author(s):  
Kazuya Saito ◽  
Akira Tsukahara ◽  
Yoji Okabe

Traditionally, origami-based structures are designed on the premise of “rigid folding,” meaning that the facets and fold lines of origami can be replaced with rigid panels and ideal hinges, respectively. Rigid folding is an important factor in defining origami for mathematicians and geometricians. However, ideal rigid folding is impossible in real structures and every act of folding and unfolding is accompanied by elastic deformations. In this study, we focus on these elastic deformations in order to expand origami into a new method of designing morphing structures. We start by proposing a simple model for evaluating elastic deformation in nonrigid origami structures. In this model, the facets of origami are replaced with plates that are not only rigid but also elastic. This partially elastic origami model has a one-degree-of-freedom mechanism; therefore, its folding process can be described using rigid folding simulation techniques. In this process, the deformations of the elastic plates can be calculated and we can estimate the elastic energy through folding/unfolding. We then apply these methods to deployable plate models constructed of quadrilateral plates and hinges to design new deployable structures. Initial strain is introduced into the elastic parts of the partially elastic origami model and these parts function as actuators for deployment. Then, by using the finite element method, we conduct numerical simulations and confirm the deploying capabilities of the models.


2020 ◽  
Vol 65 (1) ◽  
pp. 51-58
Author(s):  
Sava Ianici

The paper presents the results of research on the study of the elastic deformation of a flexible wheel from a double harmonic transmission, under the action of a cam wave generator. Knowing exactly how the flexible wheel is deformed is important in correctly establishing the geometric parameters of the wheels teeth, allowing a better understanding and appreciation of the specific conditions of harmonic gearings in the two stages of the transmission. The veracity of the results of this theoretical study on the calculation of elastic deformations and displacements of points located on the average fiber of the flexible wheel was subsequently verified and confirmed by numerical simulation of the flexible wheel, in the elastic field, using the finite element method from SolidWorks Simulation.


2015 ◽  
Vol 9 (1) ◽  
pp. 23-26 ◽  
Author(s):  
Dmytro Fedorynenko ◽  
Sergiy Boyko ◽  
Serhii Sapon

Abstract The analysis of spatial functions of pressure considering the geometrical deviations and the elastic deformation of conjugate surace have been considered. The analysis of spatial functions of pressure is performed by the finite element method. The difference of the size of pressure in a tangential direction of a pocket of a support under various service conditions has been investigated. A recommendation for improving of operational characteristics in regulated hydrostatic radial bearing has been developed.


2011 ◽  
Vol 66-68 ◽  
pp. 373-377
Author(s):  
Yue Ying Zhu ◽  
Gui Fan Zhao ◽  
You Shan Wang ◽  
Li Liang Yin

The finite element method was used to establish model of radial tire and analysis the characteristics of tire in driving state to improve the accuracy of simulation on driving performance of off-road vehicle. The dynamics models of the vehicle and its subsystem are designed to provide an off-line dynamic simulation for vehicle driving performance. Simulation and analysis for the vehicle selected previously are made, and the simulation results are compared and analyzed in detail to prove the effectiveness of the new method.


2014 ◽  
Vol 915-916 ◽  
pp. 205-208
Author(s):  
Sheng Bin Wu ◽  
Xiao Bao Liu

The theory of plates and shells is not adapted to design thickness for the multi-holes plates in engineering. A new method to quickly optimize the thickness based on the finite element method theory was put forward. The method combined the theory of plate with the finite element method to establish a mathematical model and analyzed the influences of load, constraint and complexity on design error. The practices demonstrated that the proposed design method is effective and feasible.


2012 ◽  
Vol 518-523 ◽  
pp. 2526-2529
Author(s):  
Qi Ming Xiao ◽  
Ke Shu Liu

Electrostatic precipitator is a kind of important dust collecting equipment. The rapping acceleration is the standard of electrostatic precipitator design and manufacturing. The aim of the work reported in this paper was find a new method for solving the rapping acceleration. Based on the numerical analytical method and the dynamic display algorithm, this paper is to build a new method for solving the rapping acceleration of electrostatic precipitator by using finite element method. By comparing the results of finite element method and the model test data and analyzing calculation results, this method is proved to be correct and effective. Using this method in the analyzing of practical equipment, the result basically tallies with the actual result. The finite element method can be used conveniently in different plate profiles, different ways of hanging, striking hammers and different methods of rapping. So the finite element method has an important practical significance in the analyzing of existing plate and the researching of new plate.


Author(s):  
Kazuya Saito ◽  
Akira Tsukahara ◽  
Yoji Okabe

Usually, origami-based morphing structures are designed on the premise of ‘rigid folding’, i.e. the facets and fold lines of origami can be replaced with rigid panels and ideal hinges, respectively. From a structural mechanics viewpoint, some rigid-foldable origami models are overconstrained and have negative degrees of freedom (d.f.). In these cases, the singularity in crease patterns guarantees their rigid foldability. This study presents a new method for designing self-deploying origami using the geometrically misaligned creases. In this method, some facets are replaced by ‘holes’ such that the systems become a 1-d.f. mechanism. These perforated origami models can be folded and unfolded similar to rigid-foldable (without misalignment) models because of their d.f. focusing on the removed facets, the holes will deform according to the motion of the frame of the remaining parts. In the proposed method, these holes are filled with elastic parts and store elastic energy for self-deployment. First, a new extended rigid-folding simulation technique is proposed to estimate the deformation of the holes. Next, the proposed method is applied on arbitrary-size quadrilateral mesh origami. Finally, by using the finite-element method, the authors conduct numerical simulations and confirm the deployment capabilities of the models.


2020 ◽  
pp. 9-22
Author(s):  
V.L. Kiselev ◽  
A. S. Pronin

Using the finite element method and CAD SolidWorks Simulation, the relationship between the geometric parameters of workpieces and the error in processing flat surfaces of levers caused by elastic deformations of the workpiece due to the application of holding force is established. In this paper, we developed a method for determining the error of processing flat surfaces that occurs from fixing, compiled a model for determining the error by the finite element method, and calculated the error of processing flat surfaces that occurs from fixing for workpieces with different geometric parameters. As a result of the study, the relationship between the value of the center distance of workpieces and the error in processing flat surfaces of levers caused by elastic deformations of the workpiece due to the application of holding forces was determined.


Author(s):  
Petr Hruby ◽  
Tomas Nahlik ◽  
Dana Smetanova

Propeller shafts of the vehicle's drive transmit a torque to relatively large distances. The shafts are basically long and slender and must be dimensioned not only in terms of torsional stress, but it is also necessary to monitor their resistance to lateral vibration.In the paper, a simple model (of the solved problem) is constructed by the method of physical discretization, which is evident from the nature of the centrifugal force fields' influence on the spectral properties of the shaft. An analytical solving of speed resonances prop shafts test model (whose aim is to obtain values for verification subsequently processed models based on the transfer-matrix method and the finite element method) is performed.


Sign in / Sign up

Export Citation Format

Share Document