Using Shear and Direct Current Electric Fields to Manipulate and Self-Assemble Dielectric Particles on Microchannel Walls

Author(s):  
Necmettin Cevheri ◽  
Minami Yoda

Manipulating suspended neutrally buoyant colloidal particles of radii a = O (0.1–1 μm) near solid surfaces, or walls, is a key technology in various microfluidics devices. These particles, suspended in an aqueous solution at rest near a solid surface, or wall, are subject to wall-normal “lift” forces described by the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory of colloid science. The particles experience additional lift forces, however, when suspended in a flowing solution. A fundamental understanding of such lift forces could therefore lead to new methods for the transport and self-assembly of particles near and on solid surfaces. Various studies have reported repulsive electroviscous and hydrodynamic lift forces on colloidal particles in Poiseuille flow (with a constant shear rate γ· near the wall) driven by a pressure gradient. A few studies have also observed repulsive dielectrophoretic-like lift forces in electroosmotic (EO) flows driven by electric fields. Recently, evanescent-wave particle tracking has been used to quantify near-wall lift forces on a = 125–245 nm polystyrene (PS) particles suspended in a monovalent electrolyte solution in EO flow, Poiseuille flow, and combined Poiseuille and EO flow through ∼30 μm deep fused-silica channels. In Poiseuille flow, the repulsive lift force appears to be proportional to γ·, a scaling consistent with hydrodynamic, versus electroviscous, lift. In combined Poiseuille and EO flow, the lift forces can be repulsive or attractive, depending upon whether the EO flow is in the same or opposite direction as the Poiseuille flow, respectively. The magnitude of the force appears to be proportional to the electric field magnitude. Moreover, the force in combined flow exceeds the sum of the forces observed in EO flow for the same electric field and in Poiseuille flow for the same γ·. Initial results also imply that this force, when repulsive, scales as γ·1/2. These results suggest that the lift force in combined flow is fundamentally different from electroviscous, hydrodynamic, or dielectrophoretic-like lift. Moreover, for the case when the EO flow opposes the Poiseuille flow, the particles self-assemble into dense stable periodic streamwise bands with an average width of ∼6 μm and a spacing of 2–4 times the band width when the electric field magnitude exceeds a threshold value. These results are described and reviewed here.

Author(s):  
Minami Yoda ◽  
Necmettin Cevheri

Manipulating suspended neutrally buoyant colloidal particles of radii a = O(0.1 μm–1 μm) near solid surfaces, or walls, is a key technology in various microfluidics devices. These particles, suspended in an aqueous solution at rest near a solid surface, or wall, are subject to wall-normal “lift” forces described by the DLVO theory of colloid science. The particles experience additional lift forces, however, when suspended in a flowing solution. A fundamental understanding of such lift forces could therefore lead to new methods for the transport and self-assembly of particles near and on solid surfaces. Various studies have reported repulsive electroviscous and hydrodynamic lift forces on colloidal particles in Poiseuille flow (with a constant shear rate γ̇ near the wall) driven by a pressure gradient. A few studies have also observed repulsive dielectrophoretic-like lift forces in electroosmotic (EO) flows driven by electric fields. Recently, evanescent-wave particle tracking has been used to quantify near-wall lift forces on a = 125 nm–245 nm polystyrene (PS) particles suspended in a monovalent electrolyte solution in EO flow, Poiseuille flow, and combined Poiseuille and EO flow through ∼30 μm deep fused-silica channels. In Poiseuille flow, the repulsive lift force appears to be proportional to γ̇, a scaling consistent with hydrodynamic, vs. electroviscous, lift. In combined Poiseuille and EO flow, the lift forces can be repulsive or attractive, depending upon whether the EO flow is in the same or opposite direction as the Poiseuille flow, respectively. The magnitude of the force appears to be proportional to the electric field magnitude. Moreover, the force in combined flow exceeds the sum of the forces observed in EO flow for the same electric field or in Poiseuille flow for the same γ̇. Initial results also imply that this force, when repulsive, scales as γ̇1/2. These results suggest that the lift force in combined flow is fundamentally different from electroviscous, hydrodynamic, or dielectrophoretic-like lift. Moreover, for the case when the EO flow opposes the Poiseuille flow, the particles self-assemble into dense stable periodic streamwise bands with an average width of ∼6 μm and a spacing of 2–4 times the band width when the electric field magnitude exceeds a threshold value. These results are described and reviewed here.


Author(s):  
Feng Chen ◽  
Yao Peng ◽  
Yaozu Song ◽  
Min Chen

The deformation of nitrogen bubbles in transformer oil with various DC electric fields was studied experimentally and theoretically. The bubble deformation was visualized by a high-speed digital camera. The major axis of the bubble was elongated along the direction parallel to the applied electric field, with the elongation increasing as the electric field magnitude increased. The electrical Weber number (We) was used to correlate the electric field magnitude and the electric permittivity of the working fluid to the bubble aspect ratio (AR). The experimental results indicate that the bubble aspect ratio increases with increasing We. The total electrical stresses were calculated on an actual bubble shape including the electrostriction stresses.


Author(s):  
Kshitiz Gupta ◽  
Dong Hoon Lee ◽  
Steven T. Wereley ◽  
Stuart J. Williams

Colloidal particles like polystyrene beads and metallic micro and nanoparticles are known to assemble in crystal-like structures near an electrode surface under both DC and AC electric fields. Various studies have shown that this self-assembly is governed by a balance between an attractive electrohydrodynamic (EHD) force and an induced dipole-dipole repulsion (Trau et al., 1997). The EHD force originates from electrolyte flow caused by interaction between the electric field and the polarized double layers of both the particles and the electrode surface. The particles are found to either aggregate or repel from each other on application of electric field depending on the mobility of the ions in the electrolyte (Woehl et al., 2014). The particle motion in the electrode plane is studied well under various conditions however, not as many references are available in the literature that discuss the effects of the AC electric field on their out-of-plane motion, especially at high frequencies (>10 kHz). Haughey and Earnshaw (1998), and Fagan et al. (2005) have studied the particle motion perpendicular to the electrode plane and their average height from the electrode mostly in presence of DC or low frequency AC (<1 kHz) electric field. However, these studies do not provide enough insight towards the effects of high frequency (>10 kHz) electric field on the particles’ motion perpendicular to the electrode plane.  


Author(s):  
C. B. Li

The migration of colloidal soil particles in an applied electric field has been discussed in Chapter 7. Soil particles carrying electric charges invariably adsorb equivalent amounts of ions of the opposite charge. Generally there is a certain amount of free ions present in soil solution. When an electric field is applied to a soil system, a phenomenon known as electric conductance occurs. As in the case for electrolyte solutions, soil particles and various ions interact with one another during their migration, and these interactions can affect the electric conductance of the system. Variable charge soils carry both positive and negative surface charges, and it can be expected that their interactions with various ions would be rather complicated during conductance. On the other hand, this makes the measurement of electric conductance an effective means in elucidating the mechanisms of interactions between variable charge soils and ions. Both direct-current (DC) electric fields and alternating-current (AC) electric fields can induce the migration of charged particles. In the latter case, the migration of these particles should be related to the frequency of the applied AC electric field. Therefore, in this chapter, after describing the principles of electric conductance of ions and colloids and the factors that affect the conductance of a soil, emphasis shall be placed on the interaction between variable charge soils and various ions as reflected by the frequency effect in electric conductance. For a colloidal suspension, the electric conductance may be regarded as the contribution of conductances of both charged colloidal particles and ions. These two parts may be called the electric conductance of colloidal panicles and the electric conductance of ions, respectively. However, in actual cases it is difficult to distinguish between these two parts. Therefore, it is a general practice to distinguish the electric conductance as that caused by colloidal particles plus their counterions from that caused by ions of the free solution. These may be called electric conductance of the colloid and electric conductance of the free solution. The former conductance is the difference between the electric conductance of the suspension and that of the free solution.


Author(s):  
Q. D. Liu

The simulation of inhomogeneous creep around a circular hole in the center of ferroelectric plate is presented aiming for understanding the birefringence measurements around the hole. The time dependent fields of strain and polarization around the hole in response to its concentrated electric field effect can be determined using the finite element method. It was found that the electric field concentration factor by a hole can achieve 6 times of the applied loads and shows slightly time dependence; the creep of polarization and strains process is controlled by the local electric field magnitude, which governs the saturation of remnant polarization and strain. The result of geometric principal strain difference contours around the hole agrees with that of birefringence observation. The remnant polarization increased in a power-law relation with electric field magnitude, while the principal strain difference developed quadratically with the total electric displacement. Both experimental and numerical results suggest that the strain distributes around the hole and changes with time, which is controlled by both the local electric field magnitude and the saturation process. Although the inhomogeneities enhance fields locally, the saturated values of strain and polarization decrease with an increase in the defect volume.


Langmuir ◽  
2014 ◽  
Vol 30 (46) ◽  
pp. 13771-13780 ◽  
Author(s):  
Necmettin Cevheri ◽  
Minami Yoda

Author(s):  
Christopher Church ◽  
Gaoyan Wang ◽  
Junjie Zhu ◽  
Tzuen-Rong Jeremy Tzeng ◽  
Xiangchun Xuan

Focusing cells into a tight stream is usually a necessary step prior to counting, detecting and sorting them in, for example, microfluidic flow cytometers. We present herein a simple and gentle cell focusing technique in physiological solutions through a serpentine microchannel using DC-biased AC electric fields. This electrokinetic focusing eliminates sheath flows and in-channel microelectrodes. It results from the cross-stream dielectrophoretic motion of cells induced by the intrinsic channel curvatures. The effects of electric field magnitude, AC to DC electric field ratio, AC field frequency, and cell concentration on the focusing performance of yeast cells will be studied.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2373
Author(s):  
Filippos Sofos ◽  
Theodoros Karakasidis ◽  
Ioannis E. Sarris

The present paper employs Molecular Dynamics (MD) simulations to reveal nanoscale ion separation from water/ion flows under an external electric field in Poiseuille-like nanochannels. Ions are drifted to the sidewalls due to the effect of wall-normal applied electric fields while flowing inside the channel. Fresh water is obtained from the channel centerline, while ions are rejected near the walls, similar to the Capacitive DeIonization (CDI) principles. Parameters affecting the separation process, i.e., simulation duration, percentage of the removal, volumetric flow rate, and the length of the nanochannel incorporated, are affected by the electric field magnitude, ion correlations, and channel height. For the range of channels investigated here, an ion removal percentage near 100% is achieved in most cases in less than 20 ns for an electric field magnitude of E = 2.0 V/Å. In the nutshell, the ion drift is found satisfactory in the proposed nanoscale method, and it is exploited in a practical, small-scale system. Theoretical investigation from this work can be projected for systems at larger scales to perform fundamental yet elusive studies on water/ion separation issues at the nanoscale and, one step further, for designing real devices as well. The advantages over existing methods refer to the ease of implementation, low cost, and energy consumption, without the need to confront membrane fouling problems and complex electrode material fabrication employed in CDI.


Author(s):  
S Lang ◽  
L Gan ◽  
C McLennan ◽  
O Monchi ◽  
J Kelly

Background: Tumor treatment fields (TTFields) are an approved adjuvant therapy for glioblastoma. The magnitude of applied electrical field is related to the anti-tumoral response. However, peritumoral edema (ptE) may result in shunting of electrical current around the tumor, thereby reducing the intra-tumoral electric field. In this study, we address this issue with computational simulations. Methods: Finite element models were created with varying amounts of ptE surrounding a virtual tumor. The electric field distribution was simulated using the standard TTFields electrode montage. Electric field magnitude was extracted from the tumor and related to edema thickness. Two patient specific models were created to confirm these results. Results: The inclusion of ptE decreased the magnitude of the electric field within the tumor. In the model considering a frontal tumor and an anterior-posterior electrode configuration, ≥ 6 mm of ptE decreased the electric field by 52%. In the patient specific models, ptE decreased the electric field within the tumor by an average of 26%. The effect of ptE on the electric field distribution was spatially heterogenous. Conclusions: Given the importance of electric field magnitude for the anti-tumoral effects of TTFields, the presence of edema should be considered both in future modelling studies and as a predictor of non-response.


Sign in / Sign up

Export Citation Format

Share Document