Lift Forces on Colloidal Particles in Combined Electroosmotic and Poiseuille Flow

Langmuir ◽  
2014 ◽  
Vol 30 (46) ◽  
pp. 13771-13780 ◽  
Author(s):  
Necmettin Cevheri ◽  
Minami Yoda
Author(s):  
Minami Yoda ◽  
Necmettin Cevheri

Manipulating suspended neutrally buoyant colloidal particles of radii a = O(0.1 μm–1 μm) near solid surfaces, or walls, is a key technology in various microfluidics devices. These particles, suspended in an aqueous solution at rest near a solid surface, or wall, are subject to wall-normal “lift” forces described by the DLVO theory of colloid science. The particles experience additional lift forces, however, when suspended in a flowing solution. A fundamental understanding of such lift forces could therefore lead to new methods for the transport and self-assembly of particles near and on solid surfaces. Various studies have reported repulsive electroviscous and hydrodynamic lift forces on colloidal particles in Poiseuille flow (with a constant shear rate γ̇ near the wall) driven by a pressure gradient. A few studies have also observed repulsive dielectrophoretic-like lift forces in electroosmotic (EO) flows driven by electric fields. Recently, evanescent-wave particle tracking has been used to quantify near-wall lift forces on a = 125 nm–245 nm polystyrene (PS) particles suspended in a monovalent electrolyte solution in EO flow, Poiseuille flow, and combined Poiseuille and EO flow through ∼30 μm deep fused-silica channels. In Poiseuille flow, the repulsive lift force appears to be proportional to γ̇, a scaling consistent with hydrodynamic, vs. electroviscous, lift. In combined Poiseuille and EO flow, the lift forces can be repulsive or attractive, depending upon whether the EO flow is in the same or opposite direction as the Poiseuille flow, respectively. The magnitude of the force appears to be proportional to the electric field magnitude. Moreover, the force in combined flow exceeds the sum of the forces observed in EO flow for the same electric field or in Poiseuille flow for the same γ̇. Initial results also imply that this force, when repulsive, scales as γ̇1/2. These results suggest that the lift force in combined flow is fundamentally different from electroviscous, hydrodynamic, or dielectrophoretic-like lift. Moreover, for the case when the EO flow opposes the Poiseuille flow, the particles self-assemble into dense stable periodic streamwise bands with an average width of ∼6 μm and a spacing of 2–4 times the band width when the electric field magnitude exceeds a threshold value. These results are described and reviewed here.


Author(s):  
Necmettin Cevheri ◽  
Minami Yoda

Manipulating suspended neutrally buoyant colloidal particles of radii a = O (0.1–1 μm) near solid surfaces, or walls, is a key technology in various microfluidics devices. These particles, suspended in an aqueous solution at rest near a solid surface, or wall, are subject to wall-normal “lift” forces described by the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory of colloid science. The particles experience additional lift forces, however, when suspended in a flowing solution. A fundamental understanding of such lift forces could therefore lead to new methods for the transport and self-assembly of particles near and on solid surfaces. Various studies have reported repulsive electroviscous and hydrodynamic lift forces on colloidal particles in Poiseuille flow (with a constant shear rate γ· near the wall) driven by a pressure gradient. A few studies have also observed repulsive dielectrophoretic-like lift forces in electroosmotic (EO) flows driven by electric fields. Recently, evanescent-wave particle tracking has been used to quantify near-wall lift forces on a = 125–245 nm polystyrene (PS) particles suspended in a monovalent electrolyte solution in EO flow, Poiseuille flow, and combined Poiseuille and EO flow through ∼30 μm deep fused-silica channels. In Poiseuille flow, the repulsive lift force appears to be proportional to γ·, a scaling consistent with hydrodynamic, versus electroviscous, lift. In combined Poiseuille and EO flow, the lift forces can be repulsive or attractive, depending upon whether the EO flow is in the same or opposite direction as the Poiseuille flow, respectively. The magnitude of the force appears to be proportional to the electric field magnitude. Moreover, the force in combined flow exceeds the sum of the forces observed in EO flow for the same electric field and in Poiseuille flow for the same γ·. Initial results also imply that this force, when repulsive, scales as γ·1/2. These results suggest that the lift force in combined flow is fundamentally different from electroviscous, hydrodynamic, or dielectrophoretic-like lift. Moreover, for the case when the EO flow opposes the Poiseuille flow, the particles self-assemble into dense stable periodic streamwise bands with an average width of ∼6 μm and a spacing of 2–4 times the band width when the electric field magnitude exceeds a threshold value. These results are described and reviewed here.


Author(s):  
L. V. Leak ◽  
J. F. Burke

The vital role played by the lymphatic capillaries in the transfer of tissue fluids and particulate materials from the connective tissue area can be demonstrated by the rapid removal of injected vital dyes into the tissue areas. In order to ascertain the mechanisms involved in the transfer of substances from the connective tissue area at the ultrastructural level, we have injected colloidal particles of varying sizes which range from 80 A up to 900-mμ. These colloidal particles (colloidal ferritin 80-100A, thorium dioxide 100-200 A, biological carbon 200-300 and latex spheres 900-mμ) are injected directly into the interstitial spaces of the connective tissue with glass micro-needles mounted in a modified Chambers micromanipulator. The progress of the particles from the interstitial space into the lymphatic capillary lumen is followed by observing tissues from animals (skin of the guinea pig ear) that were injected at various time intervals ranging from 5 minutes up to 6 months.


Author(s):  
Michio Ashida ◽  
Yasukiyo Ueda

An anodic oxide film is formed on aluminum in an acidic elecrolyte during anodizing. The structure of the oxide film was observed directly by carbon replica method(l) and ultra-thin sectioning method(2). The oxide film consists of barrier layer and porous layer constructed with fine hexagonal cellular structure. The diameter of micro pores and the thickness of barrier layer depend on the applying voltage and electrolyte. Because the dimension of the pore corresponds to that of colloidal particles, many metals deposit in the pores. When the oxide film is treated as anode in emulsion of polyelectrolyte, the emulsion particles migrate onto the film and deposit on it. We investigated the behavior of the emulsion particles during electrodeposition.Aluminum foils (99.3%) were anodized in either 0.25M oxalic acid solution at 30°C or 3M sulfuric acid solution at 20°C. After washing with distilled water, the oxide films used as anode were coated with emulsion particles by applying voltage of 200V and then they were cured at 190°C for 30 minutes.


1976 ◽  
Vol 37 (C6) ◽  
pp. C6-273-C6-276
Author(s):  
H. J. ÜBELHACK ◽  
F. H. WITTMANN

TAPPI Journal ◽  
2016 ◽  
Vol 15 (5) ◽  
pp. 331-335 ◽  
Author(s):  
LEBO XU ◽  
JEREMY MYERS ◽  
PETER HART

Retention of cationic dispersed rosin size was studied via turbidity measurements on stock filtrate with different alum and dispersed rosin size dosages. Stock charge characteristics were analyzed using both an analysis of charge demand determined via a streaming current detector and an evaluation of zeta potential of the fibers by streaming potential measurement. The results indicated that an optimum amount of alum existed such that good sizing retention was maintained throughout a wide range of dispersed rosin size dosages. However, when an excessive amount of alum was used and fines and colloidal particles were transitioned from anionic to cationic, the cationic size retention was reduced. Laboratory results were confirmed with a paper machine trial. All data suggested that a stock charge study was necessary to identify optimal alum dosage for a cationic dispersed rosin sizing program.


Sign in / Sign up

Export Citation Format

Share Document