Wheel Slip Control Using Sliding-Mode Technique and Maximum Transmissible Torque Estimation

Author(s):  
Jianqiu Li ◽  
Ziyou Song ◽  
Zhibin Shuai ◽  
Liangfei Xu ◽  
Minggao Ouyang

This paper presents the analysis and design of a novel traction control system (TCS) based on sliding-mode control (SMC) and maximum transmissible torque estimation (MTTE) technique, which is employed in four-wheel independent drive electric vehicles (EVs) without detecting the vehicle velocity and acceleration. The original MTTE technique is effective with regard to the antislip control; however, it cannot sufficiently utilize the adhesive force from the tire–road surface. In the proposed TCS algorithm, only front wheels are equipped with the MTTE technique, while rear wheels are equipped with the SMC technique. As a result, the front wheel is critically controlled by the MTTE technique. Thus, its rotary speed can be used to approximately estimate the chassis velocity and acceleration, which are key input parameters of the SMC. The rear wheel slip ratio can be therefore controlled by the SMC which is robust against uncertainties and disturbances of parameters for exploiting more transmissible friction force. In addition, the stability of MTTE is analyzed in this paper because an important parameter is neglected in the original MTTE technique. As a result, the stability condition is changed, and the MTTE is modified in the proposed TCS according to the new conclusion. A half four-wheel drive (4WD) EV model is initially built using matlab/simulink. This paper investigates the proposed TCS for various adhesive conditions involving abrupt change in road friction. Compared with the original MTTE technique, the comprehensive performance, particularly the acceleration ability, is significantly improved by the proposed controller. The simulation result validates the effectiveness and robustness of the proposed TCS.

Author(s):  
Jeonghoon Song ◽  
Heungseob Kim ◽  
Kwangsuck Boo

This paper presents a mathematical vehicle model that is designed to analyse and improve the dynamic performance of a vehicle. A wheel slip controller for anti-lock braking system (ABS) brakes is formulated using a sliding mode controller and a proportional-integral-derivative (PID) controller for rear wheel steering is also designed to enhance the stability, steerability, and driveability of the vehicle during transient manoeuvres. The braking and steering performances of controllers are evaluated for various driving conditions, such as straight and J-turn manoeuvres. The simulation results show that the proposed full car model is sufficient to predict vehicle responses accurately. The developed ABS reduces the stopping distance and increases the longitudinal and lateral stability of both two-and four-wheel steering vehicles. The results also demonstrate that the use of a rear wheel controller as a yaw motion controller can increase its lateral stability and reduce the slip angle at high speeds.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2501 ◽  
Author(s):  
Jinhong Sun ◽  
Xiangdang Xue ◽  
Ka Wai Eric Cheng

With the development of in-wheel technology (IWT), the design of the electric vehicles (EV) is getting much improved. The anti-lock braking system (ABS), which is a safety benchmark for automotive braking, is particularly important. Installing the braking motor at each fixed position of the wheel improves the intelligent control of each wheel. The nonlinear ABS with robustness performance is highly needed during the vehicle’s braking. The anti-lock braking controller (CAB) designed in this paper considered the well-known adhesion force, the resistance force from air and the wheel rolling friction force, which bring the vehicle model closer to the real situation. A sliding mode wheel slip ratio controller (SMWSC) is proposed to yield anti-lock control of wheels with an adaptive sliding surface. The vehicle dynamics model is established and simulated with consideration of different initial braking velocities, different vehicle masses and different road conditions. By comparing the braking effects with various CAB parameters, including stop distance, braking torque and wheel slip ratio, the SMWSC proposed in this paper has superior fast convergence and stability characteristics. Moreover, this SMWSC also has an added road-detection module, which makes the proposed braking controller more intelligent. In addition, the important brain of this proposed ABS controller is the control algorithm, which can be used in all vehicles’ ABS controller design.


2013 ◽  
Vol 347-350 ◽  
pp. 753-757
Author(s):  
Li Zhou ◽  
Lu Xiong ◽  
Zhuo Ping Yu

This paper proposes a wheel slip control strategy for 4WD Electrical Vehicle with In-wheel Motors. In the first part of this paper, a brief introduction of sliding mode control for acceleration slip regulation is given. Consider that its control effect varies with road conditions, another algorithm which can automatically adapt to different roads is designed. This method takes advantage of the peculiarity of the longitudinal static tire force curve and regulates wheel slip ratio to the detected optimal value, aiming to maximize the traction force while preserving sufficient lateral tire force. Simulation results show that the slip rate can be regulated to a value around the optimal slip ratio, and the driving torque is very close to the maximum transmissible torque. The control strategy achieves stronger stability, shorter driving distance and hence better control performance.


2013 ◽  
Vol 23 (2) ◽  
pp. 187-203 ◽  
Author(s):  
Basanta Kumar Dash ◽  
Bidyadhar Subudhi

Slip ratio control of a ground vehicle is an important concern for the development of antilock braking system (ABS) to avoid skidding when there is a transition of road surfaces. In the past, the slip ratio models of such vehicles were derived to implement ABS. It is found that the dynamics of the hybrid electric vehicle (HEV) is nonlinear, time varying and uncertain as the tire-road dynamics is a nonlinear function of road adhesion coefficient and wheel slip. Sliding mode control (SMC) is a robust control paradigm which has been extensively used successfully in the development of ABS of a HEV. But the SMC performance is influenced by the choice of sliding surface. This is due to the discontinuous switching of control force arising in the vicinity of the sliding surface that produces chattering. This paper presents a detailed study on the effects of different sliding surfaces on the performances of sliding mode based adaptive slip ratio control applied to a HEV.


2020 ◽  
Vol 10 (5) ◽  
pp. 6368-6373
Author(s):  
S. Latreche ◽  
S. Benaggoune

Anti-lock Braking System (ABS) is used in automobiles to prevent slipping and locking of wheels after the brakes are applied. Its control is a rather complicated problem due to its strongly nonlinear and uncertain characteristics. The aim of this paper is to investigate the wheel slip control of the ground vehicle, comprising two new strategies. The first strategy is the Sliding Mode Controller (SMC) and the second one is the Fuzzy Sliding Mode Controller (FSMC), which is a combination of fuzzy logic and sliding mode, to ensure the stability of the closed-loop system and remove the chattering phenomenon introduced by classical sliding mode control. The obtained simulation results reveal the efficiency of the proposed technique for various initial road conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lei Zuo ◽  
Duo Meng ◽  
Jinqi Zhang

This paper investigates the vehicle platoon control problems, in which the road-friction coefficient is taken into consideration. In order to improve the vehicle platoon safety in various road-friction conditions, an optimal spacing policy is proposed for the vehicle platoon. In detail, an intervehicle space optimization framework is developed by using a safety cost function and the gradient decent method. In this way, the optimal intervehicle spacing headway is presented such that the vehicle can be safely driven to the desired platoon under various road-friction conditions. Then, based on the proposed optimal spacing policy, we transform this optimal spacing vehicle platoon control problem into a moving target tracking problem. An adaptive distributed integrated sliding mode (DISM)-based vehicle platoon control scheme is proposed such that the vehicles can effectively follow the presented optimal spacing platoon. Moreover, the stability of the proposed vehicle platoon system is strictly analyzed and numerical simulations are provided to verify the proposed approaches.


Author(s):  
Pi Dawei ◽  
Yan Mingshuai ◽  
Liu Yulong ◽  
Liu Yahui

In order to improve the performance of ground vehicle equipped with the active front-wheel steering and active stabilizer bar, the coordination for the two systems has been researched. A layered functional framework is proposed: the upper controller coordinates yaw motion with a designed Fuzzy proportional–integral–derivative controller algorithm correcting the outputs of active front-wheel steering and active stabilizer bar; for the middle subsystems, an ideal steering ratio is designed with the Sigmoid function to achieve the active steering, and a sliding mode algorithm is designed to reduce the roll angle; the bottom actuators achieve the control target from the middle layer. In addition, the upper layer has a rebuilt fuzzy rule-based fault-tolerant mechanism that handles the failure of stabilizer bar actuators to guarantee the stability of roll and yaw motion. Finally, the simulation and rapid-control-prototype test for step steering show that the designed algorithm can ensure roll and yaw performance. In consideration of the accidental failure of active stabilizer bar actuators, by actively adjusting the coordinated rules, the system could overcome the contradiction of coupling control and still maintain yaw and roll stability, which improves the active safety.


Author(s):  
Yoshihiro Takita ◽  
Date Hisashi

This paper proposes an SSM (Sensor Steering Mechanism) for a lateral guided vehicle with an articulated body. Authors demonstrated a simple lateral guiding method SSM for front wheel steer type, the reverse phase four-wheel steer type and rear wheel steer type vehicles. SSM presents a stable lateral guiding performance for automated vehicle that following a straight and curved path created by a guideway. This paper proposes a simplified SSM to remove the following servo system for a rotating camera. The simplified SSM is applied to 1/25 scale articulated dump truck that was developed and discussed in the previous paper. The stability of the simplified SSM is discussed. Experimental and simulation results show stable movement and performance of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Jian Zhao ◽  
Jin Zhang ◽  
Bing Zhu

Road friction information is very important for vehicle active braking control systems such as ABS, ASR, or ESP. It is not easy to estimate the tire/road friction forces and coefficient accurately because of the nonlinear system, parameters uncertainties, and signal noises. In this paper, a robust and effective tire/road friction estimation algorithm for ABS is proposed, and its performance is further discussed by simulation and experiment. The tire forces were observed by the discrete Kalman filter, and the road friction coefficient was estimated by the recursive least square method consequently. Then, the proposed algorithm was analysed and verified by simulation and road test. A sliding mode based ABS with smooth wheel slip ratio control and a threshold based ABS by pulse pressure control with significant fluctuations were used for the simulation. Finally, road tests were carried out in both winter and summer by the car equipped with the same threshold based ABS, and the algorithm was evaluated on different road surfaces. The results show that the proposed algorithm can identify the variation of road conditions with considerable accuracy and response speed.


2013 ◽  
Vol 416-417 ◽  
pp. 909-913
Author(s):  
Qi Jia Liu ◽  
Si Zhong Chen

The aim of this article is to improve the brake stability of active rear wheel steering vehicle. The optimal theory of linear quadratic regulator is used to construct a controller, and the aim of the controller is to maintain the side slip angle is zero, and the control parameter is set according to the change of velocity when braking. An antilock brake model based on the door limit of wheel slip rate is constructed. The analysis is carried on a front wheel steering vehicle, which has two kinds of unti-lock mode. Meanwhile, an active rear wheel steering vehicle with two kinds of unti-lock mode is performed, also. All tests are performed on the bisectional road. The results of analysis show that the active rear wheel steering vehicle using the anti-lock mode of four wheels independent control can give the shortest braking distance, the smaller side slip angle and the smaller deviation from the lane. So it can give more contribution to the braking safety.


Sign in / Sign up

Export Citation Format

Share Document