Smart Well Pattern Optimization Using Gradient Algorithm

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Liming Zhang ◽  
Kai Zhang ◽  
Yuxue Chen ◽  
Meng Li ◽  
Jun Yao ◽  
...  

For a long time, well pattern optimization mainly relies on human experience, numerical simulations are used to test different development plans and then a preferred program is chosen for field implementation. However, this kind of method cannot provide suitable optimal well pattern layout for different geological reservoirs. In recent years, more attentions have been paid to propose well placement theories combining optimization algorithm with reservoir simulation. But these theories are mostly applied in a situation with a small amount of wells. For numerous wells in a large-scale reservoir, it is of great importance to pursue the optimal well pattern in order to obtain maximum economic benefits. The idea in this paper is originated from the idea presented by Onwunalu and Durlofsky (2011, “A New Well-Pattern-Optimization Procedure for Large-Scale Field Development,” SPE J., 16(3), pp. 594-607), which focuses on well pattern optimization, and the innovations are as follows: (1) Combine well pattern variation with production control to get the optimal overall development plan. (2) Rechoose and simplify the optimization variables, deduce the new generation process of well pattern, and use perturbation gradient to solve mathematical model in order to ensure efficiency and accuracy of final results. (3) Constrain optimization variables by log-transformation method. (4) Boundary wells are reserved by shifting into boundary artificially to avoid abrupt change of objective function which leads to a nonoptimal result due to gradient discontinuity at reservoir edge. The method is illustrated by examples of homogeneous and heterogeneous reservoirs. For homogeneous reservoir, perturbation gradient algorithm yields a quite satisfied result. Meanwhile, heterogeneous reservoir tests realize optimization of various well patterns and indicate that gradient algorithm converges faster than particle swarm optimization (PSO).

2019 ◽  
Vol 29 (07) ◽  
pp. 2050105
Author(s):  
Yukun Chen ◽  
Hui Zhao ◽  
Qi Zhang ◽  
Yuhui Zhou ◽  
Hui Wang ◽  
...  

Numerous optimization variables cause the optimization of large-scale field development challenging, which can be overcome by constraining wells to be within patterns and optimizing the parameters relevant to the pattern type and geometry. In this study, a new method incorporating well pattern optimization and production optimization for unconventional reservoirs is presented. By defining a quantitative well pattern description approach, we develop the geometric transformation parameters to quantify well pattern operations (e.g., rotation, shear, especially translation) to change the geometric shape of well patterns including five-spot, inverse seven-spot and inverse nine-spot well pattern. In contrast, a variety of optimization algorithms can be applied to accomplish the optimization of well pattern problems but the computational cost is large for many algorithms. Therefore, we also propose a general upscaling stochastic approximation algorithm (GUSA), which is an improved approximate perturbation gradient algorithm, to realize the combination of well pattern optimization and production optimization simultaneously. It is proved that both the gradient formulation of SPSA algorithm and EnOpt algorithm are the special form of the general approximate perturbation gradient. Afterwards, the synthetic cases (homogeneous and heterogeneous models) and actual unconventional field cases are discussed based on the three mentioned well pattern types. The detailed optimization results show that the presented coupling method can achieve the optimization by transforming well pattern geometry, reducing the total number of wells and adjusting the field injection rate, which is proved to be effective. In sum, this coupling method provides an efficient optimization procedure combing the well pattern optimization and production optimization for practical field development.


SPE Journal ◽  
2011 ◽  
Vol 16 (03) ◽  
pp. 594-607 ◽  
Author(s):  
J.E.. E. Onwunalu ◽  
L.J.. J. Durlofsky

Summary The optimization of large-scale multiwell field-development projects is challenging because the number of optimization variables and the size of the search space can become excessive. This difficulty can be circumvented by considering well patterns and then optimizing parameters associated with the pattern type and geometry. In this paper, we introduce a general framework for accomplishing this type of optimization. The overall procedure, which we refer to as well-pattern optimization (WPO), includes a new well-pattern description (WPD) incorporated into an underlying optimization method. The WPD encodes potential solutions in terms of pattern types (e.g., five-spot, nine-spot) and pattern operators. The operators define geometric transformations (e.g., stretching, rotating) quantified by appropriate sets of parameters. It is the parameters that specify the well patterns and the pattern operators, along with additional variables that define the sequence of operations, that are optimized. A technique for subsequent well-by-well perturbation (WWP), in which the locations of wells within each pattern are optimized, is also presented. This WWP represents an optional second phase of WPO. The overall optimization procedure could be used with a variety of underlying optimization methods. Here, we combine it with a particle-swarm-optimization (PSO) technique because PSO methods have been shown recently to provide robust and efficient optimizations for well-placement problems. Detailed optimization results are presented for several example cases. In one case, multiple reservoir models are considered to account for geological uncertainty. For all examples, significant improvement in the objective function is observed as the algorithm proceeds, particularly at early iterations. The use of well-by-well perturbation (following determination of the optimal pattern) is shown to provide additional improvement. Limited comparisons with results using standard well patterns of various sizes demonstrate that the net present values (NPVs) achieved by the new algorithm are considerably larger. Taken in total, the optimization results highlight the potential of the overall procedure for use in practical field development.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1524-1533
Author(s):  
Tao Yan ◽  
Zhan Zhan Qu ◽  
Dong Hui ◽  
Yun Jia Liu ◽  
Peng Fei Jia ◽  
...  

In the new energy power generation process, because it’s difficult to balance the dynamic energy and the system operation cost is high, the paper puts forward the basic structure of the commercial virtual power plant based on BESS system, then discuss the proper run mode of the virtual power plant to maximize the total revenue. On the basis of the electricity price of the Chinese typical areas and the cost of the BESS system, the paper builds the mathematical model of the economic benefits of the virtual power plant based on BESS system. This paper also builds the regulation optimization simulation model of the virtual power plant based on the aim of maximizing the overall profit of the energy supply and demand sides, and calculates the dynamic balance elements and optimization optimal power output value based on optimization algorithm. The simulation results show that using the virtual power plant based on BESS system to peak load shifting and control frequency is feasible in the economy.


1997 ◽  
Vol 77 (03) ◽  
pp. 436-439 ◽  
Author(s):  
Armando Tripodi ◽  
Barbara Negri ◽  
Rogier M Bertina ◽  
Pier Mannuccio Mannucci

SummaryThe factor V (FV) mutation Q506 that causes resistance to activated protein C (APC) is the genetic defect associated most frequently with venous thrombosis. The laboratory diagnosis can be made by DNA analysis or by clotting tests that measure the degree of prolongation of plasma clotting time upon addition of APC. Home-made and commercial methods are available but no comparative evaluation of their diagnostic efficacy has so far been reported. Eighty frozen coded plasma samples from carriers and non-carriers of the FV: Q506 mutation, diagnosed by DNA analysis, were sent to 8 experienced laboratories that were asked to analyze these samples in blind with their own APC resistance tests. The APTT methods were highly variable in their capacity to discriminate between carriers and non-carriers but this capacity increased dramatically when samples were diluted with FV-deficient plasma before analysis, bringing the sensitivity and specificity of these tests to 100%. The best discrimination was obtained with methods in which fibrin formation is triggered by the addition of activated factor X or Russell viper venom. In conclusion, this study provides evidence that some coagulation tests are able to distinguish carriers of the FV: Q506 mutation from non-carriers as well as the DNA test. They are inexpensive and easy to perform. Their use in large-scale clinical trials should be of help to determine the medical and economic benefits of screening healthy individuals for the mutation before they are exposed to such risk factors for venous thrombosis as surgery, pregnancy and oral contraceptives.


2020 ◽  
Vol 39 (6) ◽  
pp. 8823-8830
Author(s):  
Jiafeng Li ◽  
Hui Hu ◽  
Xiang Li ◽  
Qian Jin ◽  
Tianhao Huang

Under the influence of COVID-19, the economic benefits of shale gas development are greatly affected. With the large-scale development and utilization of shale gas in China, it is increasingly important to assess the economic impact of shale gas development. Therefore, this paper proposes a method for predicting the production of shale gas reservoirs, and uses back propagation (BP) neural network to nonlinearly fit reservoir reconstruction data to obtain shale gas well production forecasting models. Experiments show that compared with the traditional BP neural network, the proposed method can effectively improve the accuracy and stability of the prediction. There is a nonlinear correlation between reservoir reconstruction data and gas well production, which does not apply to traditional linear prediction methods


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Takumi Kayukawa ◽  
Kenjiro Furuta ◽  
Keisuke Nagamine ◽  
Tetsuro Shinoda ◽  
Kiyoaki Yonesu ◽  
...  

Abstract Insecticide resistance has recently become a serious problem in the agricultural field. Development of insecticides with new mechanisms of action is essential to overcome this limitation. Juvenile hormone (JH) is an insect-specific hormone that plays key roles in maintaining the larval stage of insects. Hence, JH signaling pathway is considered a suitable target in the development of novel insecticides; however, only a few JH signaling inhibitors (JHSIs) have been reported, and no practical JHSIs have been developed. Here, we established a high-throughput screening (HTS) system for exploration of novel JHSIs using a Bombyx mori cell line (BmN_JF&AR cells) and carried out a large-scale screening in this cell line using a chemical library. The four-step HTS yielded 69 compounds as candidate JHSIs. Topical application of JHSI48 to B. mori larvae caused precocious metamorphosis. In ex vivo culture of the epidermis, JHSI48 suppressed the expression of the Krüppel homolog 1 gene, which is directly activated by JH-liganded receptor. Moreover, JHSI48 caused a parallel rightward shift in the JH response curve, suggesting that JHSI48 possesses a competitive antagonist-like activity. Thus, large-scale HTS using chemical libraries may have applications in development of future insecticides targeting the JH signaling pathway.


2021 ◽  
Vol 13 (3) ◽  
pp. 1274
Author(s):  
Loau Al-Bahrani ◽  
Mehdi Seyedmahmoudian ◽  
Ben Horan ◽  
Alex Stojcevski

Few non-traditional optimization techniques are applied to the dynamic economic dispatch (DED) of large-scale thermal power units (TPUs), e.g., 1000 TPUs, that consider the effects of valve-point loading with ramp-rate limitations. This is a complicated multiple mode problem. In this investigation, a novel optimization technique, namely, a multi-gradient particle swarm optimization (MG-PSO) algorithm with two stages for exploring and exploiting the search space area, is employed as an optimization tool. The M particles (explorers) in the first stage are used to explore new neighborhoods, whereas the M particles (exploiters) in the second stage are used to exploit the best neighborhood. The M particles’ negative gradient variation in both stages causes the equilibrium between the global and local search space capabilities. This algorithm’s authentication is demonstrated on five medium-scale to very large-scale power systems. The MG-PSO algorithm effectively reduces the difficulty of handling the large-scale DED problem, and simulation results confirm this algorithm’s suitability for such a complicated multi-objective problem at varying fitness performance measures and consistency. This algorithm is also applied to estimate the required generation in 24 h to meet load demand changes. This investigation provides useful technical references for economic dispatch operators to update their power system programs in order to achieve economic benefits.


2013 ◽  
Author(s):  
Ji Zhang ◽  
Tao Lu ◽  
Yuegang Li ◽  
Shuming Yu ◽  
Jingbu Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document