The Impact of Blade Loading and Unsteady Pressure Bifurcations on Low-Pressure Turbine Flutter Boundaries

2015 ◽  
Vol 138 (4) ◽  
Author(s):  
Joshua J. Waite ◽  
Robert E. Kielb

The three major aeroelastic issues in the turbomachinery blades of jet engines and power turbines are forced response, nonsynchronous vibrations, and flutter. Flutter primarily affects high-aspect ratio blades found in the fan, fore high-pressure compressor stages, and aft low-pressure turbine (LPT) stages as low natural frequencies and high axial velocities create smaller reduced frequencies. Often with LPT flutter analyses, physical insights are lost in the exhaustive quest for determining whether the aerodynamic damping is positive or negative. This paper underlines some well-known causes of the LPT flutter in addition to one novel catalyst. In particular, an emphasis is placed on revealing how local aerodynamic damping contributions change as a function of unsteady (e.g., mode shape, reduced frequency) and steady (e.g., blade torque, pressure ratio) parameters. To this end, frequency domain Reynolds-averaged Navier–Stokes (RANS) CFD analyses are used as computational wind tunnels to investigate how aerodynamic loading variations affect flutter boundaries. Preliminary results show clear trends between the aerodynamic work influence coefficients and variations in exit Mach number and back pressure, especially for torsional mode shapes affecting the passage throat. Additionally, visualizations of qualitative bifurcations in the unsteady pressure phases around the airfoil shed light on how local damping contributions evolve with steady loading. Final results indicate a sharp drop in aeroelastic stability near specific regions of the pressure ratio, indicating a strong correlation between blade loading and flutter. Passage throat shock behavior is shown to be a controlling factor near the trailing edge, and as with critical reduced frequency, this phenomenon is shown to be highly dependent on the vibratory mode shape.

Author(s):  
Joshua J. Waite ◽  
Robert E. Kielb

The three major aeroelastic issues in the turbomachinery blades of jet engines and power turbines are forced response, non-synchronous vibrations, and flutter. Flutter primarily affects high-aspect ratio blades found in the fan, fore high-pressure compressor stages, and aft low-pressure turbine (LPT) stages as low natural frequencies and high axial velocities create smaller reduced frequencies. Often with LPT flutter analyses, physical insights are lost in the exhaustive quest for determining whether the aerodynamic damping is positive or negative. This paper underlines some well known causes of low-pressure turbine flutter in addition to one novel catalyst. In particular, an emphasis is placed on revealing how local aerodynamic damping contributions change as a function of unsteady (e.g. mode shape, reduced frequency) and steady (e.g. blade torque, pressure ratio) parameters. To this end, frequency domain RANS CFD analyses are used as computational wind tunnels to investigate how aerodynamic loading variations affect flutter boundaries. Preliminary results show clear trends between the aerodynamic work influence coefficients and variations in exit Mach number and back pressure, especially for torsional mode shapes affecting the passage throat. Additionally, visualizations of qualitative bifurcations in the unsteady pressure phases around the airfoil shed light on how local damping contributions evolve with steady loading. Final results indicate a sharp drop in aeroelastic stability near specific regions of the pressure ratio indicating a strong correlation between blade loading and flutter. Passage throat shock behavior is shown to be a controlling factor near the trailing edge, and like critical reduced frequency, this phenomenon is shown to be highly dependent on the vibratory mode shape.


2004 ◽  
Vol 126 (2) ◽  
pp. 306-309 ◽  
Author(s):  
Robert Kielb ◽  
Jack Barter ◽  
Olga Chernycheva ◽  
Torsten Fransson

A current preliminary design method for flutter of low pressure turbine blades and vanes only requires knowledge of the reduced frequency and mode shape (real). However, many low pressure turbine (LPT) blade designs include a tip shroud that mechanically connects the blades together in a structure exhibiting cyclic symmetry. A proper vibration analysis produces a frequency and complex mode shape that represents two real modes phase shifted by 90 deg. This paper describes an extension to the current design method to consider these complex mode shapes. As in the current method, baseline unsteady aerodynamic analyses must be performed for the three fundamental motions, two translations and a rotation. Unlike the current method work matrices must be saved for a range of reduced frequencies and interblade phase angles. These work matrices are used to generate the total work for the complex mode shape. Since it still only requires knowledge of the reduced frequency and mode shape (complex), this new method is still very quick and easy to use. Theory and an example application are presented.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Sara Biagiotti ◽  
Juri Bellucci ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Gino Baldi ◽  
...  

Abstract In this work, the effects of turbine center frame (TCF) wakes on the aeromechanical behavior of the downstream low-pressure turbine (LPT) blades are numerically investigated and compared with the experimental data. A small industrial gas turbine has been selected as a test case, composed of a TCF followed by the two low-pressure stages and a turbine rear frame (TRF) before the exhaust plenum. Full annulus unsteady computations of the whole low-pressure module have been performed. Two operating conditions, full (100%) and partial (50%) load, have been investigated with the aim of highlighting the impact of TCF wakes convection and diffusion through the downstream rows. Attention was paid to the harmonic content of rotors’ blades. The results show a slower decay of the wakes through the downstream rows in off-design conditions compared with the design point. The analysis of the rotors’ frequency spectrum reveals that moving from design to off-design conditions, the effect of the TCF does not change significantly. The harmonic contribution of all turbine components has been extracted, highlighting the effect of statoric parts on the last LPT blade. The TCF harmonic content remains the most relevant from an aeromechanic point of view as per experimental evidence, and it is considered for an forced response analysis (FRA) on the last LPT blade itself. Finally, aerodynamic and aeromechanic predictions have been compared with the experimental data to validate the numerical approach. Some general design solutions aimed at mitigating the TCF wakes impact are discussed.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Xu Dong ◽  
Yingjie Zhang ◽  
Ziqing Zhang ◽  
Xingen Lu ◽  
Yanfeng Zhang

Abstract This research presents a series of simulations that investigate the effects of tip clearance on the aeroelastic stability of a wide-chord high-speed transonic fan rotor. The results show that the stall margin and the total pressure ratio decreases as the tip clearance increases. The effect of tip clearance on the blade loading can extend to 30% span. The phase of the influence coefficient without tip clearance is different from that with clearance, which causes the most unstable aerodynamic damping to shift in the nodal diameter. As the clearance increases from 0.25 mm to 2 mm, the damping decreases. The nonmonotonic behavior found by other researchers was not observed in this study. We conclude that the tip clearance affects the aeroelastic stability in two ways. The first is to change the blade loading so that the amplitude of the unsteady pressure increases or decreases, while the phase hardly changes, resulting in changes in aerodynamic damping. The second is to change the local flow so that the unsteady pressure amplitude and the phase change locally.


Author(s):  
Sara Biagiotti ◽  
Juri Bellucci ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Gino Baldi ◽  
...  

Abstract In this work, the effects of Turbine Center Frame (TCF) wakes on the aeromechanical behavior of the downstream Low Pressure Turbine (LPT) blades are numerically investigated and compared with experimental data. A small industrial gas turbine has been selected as a test case, composed of a TCF followed by the two low pressure stages and a Turbine Rear Frame (TRF) before the exhaust plenum. Full annulus unsteady computations of the whole low-pressure module have been performed. Two operating conditions, full (100%) and partial (50%) load, have been investigated with the aim of highlighting the impact of TCF wakes convection and diffusion through the downstream rows. Attention was paid to the harmonic content of rotors’ blades. From an aerodynamic point of view, the results show a slower decay of the wakes through the downstream rows in off-design conditions as compared to the design point. The wakes generated by the struts at partial load persist throughout the domain outlet, while they are chopped and circumferentially transported by the rotors motion. This is due to the strong incidence variation at which the TCF works, which induces the growth of wide regions of separated flow on the rear part of the struts. Nevertheless, the analysis of the rotors’ frequency spectrum reveals that moving from design to off-design conditions, the effect of the TCF does not change significantly, thanks to the filtering action of the first LPT stage movable Nozzle Guide Vane (NGV). From unsteady calculations the harmonic contribution of all turbine components has been extracted, highlighting the effect of statoric parts on the last LPT blade. Anyhow the TCF harmonic content remains the most relevant from an aeromechanic point of view as per experimental evidence, and it is considered for a Forced Response Analysis (FRA) on the last LPT blade itself. Finally, aerodynamic and aeromechanic predictions have been compared with the experimental data to validate the numerical approach. In the last part of this paper some general design solutions, that can help mitigation of the TCF wakes impact, are discussed.


Author(s):  
Robert Kielb ◽  
John Barter ◽  
Olga Chernysheva ◽  
Torsten Fransson

A current preliminary design method for flutter of low pressure turbine blades and vanes only requires knowledge of the reduced frequency and mode shape (real). However, many low pressure turbine (LPT) blade designs include a tip shroud, that mechanically connects the blades together in a structure exhibiting cyclic symmetry. A proper vibration analysis produces a frequency and complex mode shape that represents two real modes phase shifted by 90 degrees. This paper describes an extension to the current design method to consider these complex mode shapes. As in the current method, baseline unsteady aerodynamic analyses must be performed for the 3 fundamental motions, two translations and a rotation. Unlike the current method work matrices must be saved for a range of reduced frequencies and interblade phase angles. These work matrices are used to generate the total work for the complex mode shape. Since it still only requires knowledge of the reduced frequency and mode shape (complex), this new method is still very quick and easy to use. Theory and an example application are presented.


Author(s):  
Josef Panovsky ◽  
Robert E. Kielb

A design approach to avoid flutter of low pressure turbine blades in aircraft engines is described. A linearized Euler analysis, previously validated using experimental data, is used for a series of parameter studies. The influence of mode shape and reduced frequency are investigated. Mode shape is identified as the most important contributor to determining the stability of a blade design. A new stability parameter is introduced to gain additional insight into the key contributors to flutter. This stability parameter is derived from the influence coefficient representation of the cascade, and includes only contributions from the reference blade and its immediate neighbors. This has the effect of retaining the most important contributions to aerodynamic damping while filtering out terms of less significance. This parameter is utilized to develop a stability map, which provides the critical reduced frequency as a function of torsion axis location. Rules for preliminary design and procedures for detailed design analysis are defined.


Author(s):  
Zhiping Mao ◽  
Robert E. Kielb

This paper studies a subsonic compressor case with concurrent forced response and flutter by using the Harmonic Balance method, and was inspired by historical experimental data. Forced response was observed when the rotating speed was approaching a crossing on the Campbell diagram, where flutter appeared to be suppressed. CFD simulations are conducted by using a quasi-3D configuration at the mid-span of one stage of a 3.5-stage compressor. Due to the constraint of frequency domain methods, the research is conducted in the vicinity of the 1T-44EO crossing with a small frequency shift between flutter frequency and external excitation frequency. The influence from flutter to forced response is observed: a one-way crosstalk at forced response frequency is observed, presented as the anomaly of unsteady velocity and unsteady pressure near the rear section of rotor blades and in the rotor wake region. The anomaly is speculated as the presence of increasing intensity of shedding vortices induced by the vibration of the blade. To further prove the impact of this viscous effect, a numerical experiment was performed with inviscid rotor blades. In contrast to the crosstalk at forced response frequency, no obvious influence on the unsteady behavior is detected at the flutter frequency, and this observation is confirmed at multiple vibration amplitudes. Considering the relationship between unsteady pressure at flutter frequency and aerodynamic damping, we conclude the influence of forced response on the aerodynamic damping is negligible. In addition, a linearity of unsteady pressure at the flutter frequency vs. vibration amplitude is uncovered. The discoveries provide a proof to linearity assumption and single-frequency simplification widely adopted by industry in flutter simulations.


1999 ◽  
Vol 122 (1) ◽  
pp. 89-98 ◽  
Author(s):  
J. Panovsky ◽  
R. E. Kielb

A design approach to avoid flutter of low pressure turbine blades in aircraft engines is described. A linearized Euler analysis, previously validated using experimental data, is used for a series of parameter studies. The influence of mode shape and reduced frequency are investigated. Mode shape is identified as the most important contributor to determining the stability of a blade design. A new stability parameter is introduced to gain additional insight into the key contributors to flutter. This stability parameter is derived from the influence coefficient representation of the cascade, and includes only contributions from the reference blade and its immediate neighbors. This has the effect of retaining the most important contributions to aerodynamic damping while filtering out terms of less significance. This parameter is utilized to develop a stability map, which provides the critical reduced frequency as a function of torsion axis location. Rules for preliminary design and procedures for detailed design analysis are defined. [S0742-4795(00)01401-0]


Author(s):  
Andreas Kellersmann ◽  
Sarah Weiler ◽  
Christoph Bode ◽  
Jens Friedrichs ◽  
Jörn Städing ◽  
...  

The overall efficiency and operational behavior of aircraft engines are influenced by the surface finish of the airfoils. During operation, the surface roughness significantly increases due to erosion and deposition processes. The aim of this study is to analyze the influence of roughness on the aerodynamics of the low-pressure turbine of a mid-sized high bypass turbofan. In order to gain a better insight into the operational roughness structures, a sample of new, used, cleaned and reworked turbine blades and vanes are measured using the confocal laser scanning microscopy technique. The measurement results show local inhomogeneities. The roughness distributions measured are then converted into their equivalent sand grain roughness ks,eq to permit an evaluation of the impact on aerodynamic losses. The numerical study is performed using the CFD-solver TRACE which was validated before with existing data from Rig experiments. It is observed that the influence of the surface roughness on the turbine efficiency is significant at take-off but negligible at cruise. A detailed analysis on the aerodynamics at take-off shows that very rough airfoils lead to higher profile and secondary loss. Due to the higher disturbances present in flows circulating over rough walls, the transition occurs earlier and the momentum thickness increases in the turbulent boundary layer. The service-induced roughness structures cause an efficiency drop in the low pressure turbine of ηT = −0.16% compared to new parts. A gas path analysis showed that this results in an increased fuel flow of Δṁf = +0.06% and an exhaust gas temperature rise of ΔEGT = +1.2K for fixed engine pressure ratio which is equivalent to roughly 4 percent of the typical EGT margin of a fully refurbished engine. This result stresses the importance of roughness induced loss in low pressure turbines.


Sign in / Sign up

Export Citation Format

Share Document