Impact of Turbine Center Frame Wakes on Downstream Rows in Heavy Duty Low Pressure Turbine

Author(s):  
Sara Biagiotti ◽  
Juri Bellucci ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Gino Baldi ◽  
...  

Abstract In this work, the effects of Turbine Center Frame (TCF) wakes on the aeromechanical behavior of the downstream Low Pressure Turbine (LPT) blades are numerically investigated and compared with experimental data. A small industrial gas turbine has been selected as a test case, composed of a TCF followed by the two low pressure stages and a Turbine Rear Frame (TRF) before the exhaust plenum. Full annulus unsteady computations of the whole low-pressure module have been performed. Two operating conditions, full (100%) and partial (50%) load, have been investigated with the aim of highlighting the impact of TCF wakes convection and diffusion through the downstream rows. Attention was paid to the harmonic content of rotors’ blades. From an aerodynamic point of view, the results show a slower decay of the wakes through the downstream rows in off-design conditions as compared to the design point. The wakes generated by the struts at partial load persist throughout the domain outlet, while they are chopped and circumferentially transported by the rotors motion. This is due to the strong incidence variation at which the TCF works, which induces the growth of wide regions of separated flow on the rear part of the struts. Nevertheless, the analysis of the rotors’ frequency spectrum reveals that moving from design to off-design conditions, the effect of the TCF does not change significantly, thanks to the filtering action of the first LPT stage movable Nozzle Guide Vane (NGV). From unsteady calculations the harmonic contribution of all turbine components has been extracted, highlighting the effect of statoric parts on the last LPT blade. Anyhow the TCF harmonic content remains the most relevant from an aeromechanic point of view as per experimental evidence, and it is considered for a Forced Response Analysis (FRA) on the last LPT blade itself. Finally, aerodynamic and aeromechanic predictions have been compared with the experimental data to validate the numerical approach. In the last part of this paper some general design solutions, that can help mitigation of the TCF wakes impact, are discussed.

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Sara Biagiotti ◽  
Juri Bellucci ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Gino Baldi ◽  
...  

Abstract In this work, the effects of turbine center frame (TCF) wakes on the aeromechanical behavior of the downstream low-pressure turbine (LPT) blades are numerically investigated and compared with the experimental data. A small industrial gas turbine has been selected as a test case, composed of a TCF followed by the two low-pressure stages and a turbine rear frame (TRF) before the exhaust plenum. Full annulus unsteady computations of the whole low-pressure module have been performed. Two operating conditions, full (100%) and partial (50%) load, have been investigated with the aim of highlighting the impact of TCF wakes convection and diffusion through the downstream rows. Attention was paid to the harmonic content of rotors’ blades. The results show a slower decay of the wakes through the downstream rows in off-design conditions compared with the design point. The analysis of the rotors’ frequency spectrum reveals that moving from design to off-design conditions, the effect of the TCF does not change significantly. The harmonic contribution of all turbine components has been extracted, highlighting the effect of statoric parts on the last LPT blade. The TCF harmonic content remains the most relevant from an aeromechanic point of view as per experimental evidence, and it is considered for an forced response analysis (FRA) on the last LPT blade itself. Finally, aerodynamic and aeromechanic predictions have been compared with the experimental data to validate the numerical approach. Some general design solutions aimed at mitigating the TCF wakes impact are discussed.


Author(s):  
Fanny M. Besem ◽  
Robert E. Kielb ◽  
Nicole L. Key

The frequency mistuning that occurs due to manufacturing variations and wear and tear of the blades can have a significant effect on the flutter and forced response behavior of a blade row. Similarly, asymmetries in the aerodynamic or excitation forces can tremendously affect the blade responses. When conducting CFD simulations, all blades are assumed to be tuned (i.e. to have the same natural frequency) and the aerodynamic forces are assumed to be the same on each blade except for a shift in interblade phase angle. The blades are thus predicted to vibrate at the same amplitude. However, when the system is mistuned or when asymmetries are present, some blades can vibrate with a much higher amplitude than the tuned, symmetric system. In this research, we first conduct a deterministic forced response analysis of a mistuned rotor and compare the results to experimental data from a compressor rig. It is shown that tuned CFD results cannot be compared directly with experimental data because of the impact of frequency mistuning on forced response predictions. Moreover, the individual impact of frequency, aerodynamic, and forcing function perturbations on the predictions is assessed, leading to the conclusion that a mistuned system has to be studied probabilistically. Finally, all perturbations are combined and Monte-Carlo simulations are conducted to obtain the range of blade response amplitudes that a designer could expect.


Author(s):  
Joshua J. Waite ◽  
Robert E. Kielb

The three major aeroelastic issues in the turbomachinery blades of jet engines and power turbines are forced response, non-synchronous vibrations, and flutter. Flutter primarily affects high-aspect ratio blades found in the fan, fore high-pressure compressor stages, and aft low-pressure turbine (LPT) stages as low natural frequencies and high axial velocities create smaller reduced frequencies. Often with LPT flutter analyses, physical insights are lost in the exhaustive quest for determining whether the aerodynamic damping is positive or negative. This paper underlines some well known causes of low-pressure turbine flutter in addition to one novel catalyst. In particular, an emphasis is placed on revealing how local aerodynamic damping contributions change as a function of unsteady (e.g. mode shape, reduced frequency) and steady (e.g. blade torque, pressure ratio) parameters. To this end, frequency domain RANS CFD analyses are used as computational wind tunnels to investigate how aerodynamic loading variations affect flutter boundaries. Preliminary results show clear trends between the aerodynamic work influence coefficients and variations in exit Mach number and back pressure, especially for torsional mode shapes affecting the passage throat. Additionally, visualizations of qualitative bifurcations in the unsteady pressure phases around the airfoil shed light on how local damping contributions evolve with steady loading. Final results indicate a sharp drop in aeroelastic stability near specific regions of the pressure ratio indicating a strong correlation between blade loading and flutter. Passage throat shock behavior is shown to be a controlling factor near the trailing edge, and like critical reduced frequency, this phenomenon is shown to be highly dependent on the vibratory mode shape.


2006 ◽  
Vol 129 (3) ◽  
pp. 527-541 ◽  
Author(s):  
Y. B. Suzen ◽  
P. G. Huang ◽  
D. E. Ashpis ◽  
R. J. Volino ◽  
T. C. Corke ◽  
...  

A transport equation for the intermittency factor is employed to predict the transitional flows in low-pressure turbines. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, μt, with the intermittency factor, γ. Turbulent quantities are predicted by using Menter’s two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The model had been previously validated against low-pressure turbine experiments with success. In this paper, the model is applied to predictions of three sets of recent low-pressure turbine experiments on the Pack B blade to further validate its predicting capabilities under various flow conditions. Comparisons of computational results with experimental data are provided. Overall, good agreement between the experimental data and computational results is obtained. The new model has been shown to have the capability of accurately predicting transitional flows under a wide range of low-pressure turbine conditions.


Author(s):  
L. Simonassi ◽  
M. Zenz ◽  
P. Bruckner ◽  
F. Heitmeir ◽  
A. Marn

Abstract Modern low pressure turbine (LPT) architectures of aero engines are designed in order to optimize weight, decrease the fuel consumption and noise emissions. This can be achieved with the use of lighter materials or by reducing the size of the engine. In particular, decreasing the axial distances between the blade rows and shortening the turbine centre frame. As a consequence, it becomes more and more important to investigate the influence of inflow circumferential distortions of total pressure and temperature that can be originated by struts, flow injections and measurement instrumentation. This work presents the results of an experimental investigation on the influence of total pressure inflow inhomogeneity on the aerodynamics and on the vibrations of a low pressure turbine stage. The measurements were carried out in a one and a half stage subsonic test turbine facility at nominal engine relevant operating conditions and during speed transient operation, including a resonance crossing. Steady and unsteady aerodynamic measurements were performed with a five-hole-probe (5HP) and a fast response aerodynamic pressure probe (FRAPP) respectively, while the LPT rotor vibration data were acquired using strain gauges applied on different blades, in combination with a telemetry system. Analysis in the frequency domain as well as a curve fitting method were applied to estimate the blades forced response and the critical damping. It will be shown that the distortion creates steady and unsteady aerodynamic alterations, causing direct effects on the rotor vibration characteristics.


2015 ◽  
Vol 138 (4) ◽  
Author(s):  
Joshua J. Waite ◽  
Robert E. Kielb

The three major aeroelastic issues in the turbomachinery blades of jet engines and power turbines are forced response, nonsynchronous vibrations, and flutter. Flutter primarily affects high-aspect ratio blades found in the fan, fore high-pressure compressor stages, and aft low-pressure turbine (LPT) stages as low natural frequencies and high axial velocities create smaller reduced frequencies. Often with LPT flutter analyses, physical insights are lost in the exhaustive quest for determining whether the aerodynamic damping is positive or negative. This paper underlines some well-known causes of the LPT flutter in addition to one novel catalyst. In particular, an emphasis is placed on revealing how local aerodynamic damping contributions change as a function of unsteady (e.g., mode shape, reduced frequency) and steady (e.g., blade torque, pressure ratio) parameters. To this end, frequency domain Reynolds-averaged Navier–Stokes (RANS) CFD analyses are used as computational wind tunnels to investigate how aerodynamic loading variations affect flutter boundaries. Preliminary results show clear trends between the aerodynamic work influence coefficients and variations in exit Mach number and back pressure, especially for torsional mode shapes affecting the passage throat. Additionally, visualizations of qualitative bifurcations in the unsteady pressure phases around the airfoil shed light on how local damping contributions evolve with steady loading. Final results indicate a sharp drop in aeroelastic stability near specific regions of the pressure ratio, indicating a strong correlation between blade loading and flutter. Passage throat shock behavior is shown to be a controlling factor near the trailing edge, and as with critical reduced frequency, this phenomenon is shown to be highly dependent on the vibratory mode shape.


Author(s):  
Francesco Piraccini ◽  
Salvatore Lorusso ◽  
Nicola Maceli ◽  
John Ryman

Faced with the present transformation of the world economy, steam turbine manufacturers are seeking ways to remain competitive in their respective markets. Having longer Low Pressure (LP) blades and seeking for higher rotating speeds have always been two effective methods to improve the Steam Turbine efficiency, therefore to reduce steam consumption and related plant costs. Both trends have increased the risk of failure for forced response due to the occurrence of resonance or to the decrease of alternating stress margins. Because of large uncertainties in the estimation of friction damping and aerodynamic excitation, the prediction of dynamic response of the long blades in the LP section is still a challenge for the analytical tools; therefore, expensive activities for experimental validation are usually required. In order to reduce design costs and time, a set of tools has been developed and validated using the test data collected during a full-scale test vehicle campaign in steam (Low Pressure Development Turbine - LPDT). In this study, the validation activity related to the blade response due to nozzle stimulus is reported. As a first step, a steady state CFD analysis was performed at the operating conditions where significant response was observed, caused by the resonance with the Nozzle Passing Frequency (NPF). Then, an unsteady CFD analysis of the bucket blade was conducted considering the perturbation due to the nozzles. Subsequently, the computed unsteady pressure distribution on the blade airfoil was mapped onto a finite element model and forced response analyses were performed to estimate the bucket dynamic response. The predicted response was compared against measured test data and good correlation was found.


Author(s):  
Christoph Heinz ◽  
Markus Schatz ◽  
Michael V. Casey ◽  
Heinrich Stu¨er

To guarantee a faultless operation of a turbine it is necessary to know the dynamic performance of the machine especially during start-up and shut-down. In this paper the vibration behaviour of a low pressure model steam turbine which has been intentionally mistuned is investigated at the resonance point of an eigenfrequency crossing an engine order. Strain gauge measurements as well as tip timing analysis have been used, whereby a very good agreement is found between the methods. To enhance the interpretation of the data measured, an analytical mass-spring-model, which incorporates degrees of freedom for the blades as well as for the rotor shaft, is presented. The vibration amplitude varies strongly from blade to blade. This is caused by the mistuning parameters and the coupling through the rotor shaft. This circumferential blade amplitude distribution is investigated at different operating conditions. The results show an increasing aerodynamic coupling with increasing fluid density, which becomes visible in a changing circumferential blade amplitude distribution. Furthermore the blade amplitudes rise non-linearly with increasing flow velocity, while the amplitude distribution is almost independent. Additionally, the mechanical and aerodynamic damping parameters are calculated by means of a non-linear regression method. Based on measurements at different density conditions, it is possible to extrapolate the damping parameters down to vacuum conditions, where aerodynamic damping is absent. Hence the material damping parameter can be determined.


Author(s):  
L. Simonassi ◽  
M. Zenz ◽  
P. Bruckner ◽  
S. Pramstrahler ◽  
F. Heitmeir ◽  
...  

Abstract The design of modern aero engines enhances the interaction between components and facilitates the propagation of circumferential distortions of total pressure and temperature. As a consequence, the inlet conditions of a real turbine have significant spatial non-uniformities, which have direct consequences on both its aerodynamic and vibration characteristics. This work presents the results of an experimental study on the effects of different inlet total pressure distortion-stator clocking positions on the propagation of total pressure inflow disturbances through a low pressure turbine stage, with a particular focus on both the aerodynamic and aeroelastic performance. Measurements at a stable engine relevant operating condition and during transient operation were carried out in a one and a half stage subsonic turbine test facility at the Institute of Thermal Turbomachinery and Machine Dynamics at Graz University of Technology. A localised total pressure distortion was generated upstream of the stage in three different azimuthal positions relative to the stator vanes. The locations were chosen in order to align the distortion directly with a vane leading edge, suction side and pressure side. Additionally, a setup with clean inflow was used as reference. Steady and unsteady aerodynamic measurements were taken downstream of the investigated stage by means of a five-hole-probe (5HP) and a fast response aerodynamic pressure probe (FRAPP) respectively. Strain gauges applied on different blades were used in combination with a telemetry system to acquire the rotor vibration data. The aerodynamic interactions between the stator and rotor rows and the circumferential perturbation were studied through the identification of the main structures constituting the flow field. This showed that the steady and unsteady alterations created by the distortion in the flow field lead to modifications of the rotor vibration characteristics. Moreover, the importance of the impact that the pressure distortion azimuthal position has on the LPT stage aerodynamics and vibrations was highlighted.


Sign in / Sign up

Export Citation Format

Share Document