Surface Roughness Impact on Low-Pressure Turbine Performance due to Operational Deterioration

Author(s):  
Andreas Kellersmann ◽  
Sarah Weiler ◽  
Christoph Bode ◽  
Jens Friedrichs ◽  
Jörn Städing ◽  
...  

The overall efficiency and operational behavior of aircraft engines are influenced by the surface finish of the airfoils. During operation, the surface roughness significantly increases due to erosion and deposition processes. The aim of this study is to analyze the influence of roughness on the aerodynamics of the low-pressure turbine of a mid-sized high bypass turbofan. In order to gain a better insight into the operational roughness structures, a sample of new, used, cleaned and reworked turbine blades and vanes are measured using the confocal laser scanning microscopy technique. The measurement results show local inhomogeneities. The roughness distributions measured are then converted into their equivalent sand grain roughness ks,eq to permit an evaluation of the impact on aerodynamic losses. The numerical study is performed using the CFD-solver TRACE which was validated before with existing data from Rig experiments. It is observed that the influence of the surface roughness on the turbine efficiency is significant at take-off but negligible at cruise. A detailed analysis on the aerodynamics at take-off shows that very rough airfoils lead to higher profile and secondary loss. Due to the higher disturbances present in flows circulating over rough walls, the transition occurs earlier and the momentum thickness increases in the turbulent boundary layer. The service-induced roughness structures cause an efficiency drop in the low pressure turbine of ηT = −0.16% compared to new parts. A gas path analysis showed that this results in an increased fuel flow of Δṁf = +0.06% and an exhaust gas temperature rise of ΔEGT = +1.2K for fixed engine pressure ratio which is equivalent to roughly 4 percent of the typical EGT margin of a fully refurbished engine. This result stresses the importance of roughness induced loss in low pressure turbines.

Author(s):  
Andreas Kellersmann ◽  
Sarah Weiler ◽  
Christoph Bode ◽  
Jens Friedrichs ◽  
Jörn Städing ◽  
...  

The overall efficiency and operational behavior of aircraft engines are influenced by the surface finish of the airfoils. During operation, the surface roughness significantly increases due to erosion and deposition processes. The aim of this study is to analyze the influence of roughness on the aerodynamics of the low-pressure turbine (LPT) of a midsized high bypass turbofan. In order to gain a better insight into the operational roughness structures, a sample of new, used, cleaned, and reworked turbine blades and vanes are measured using the confocal laser scanning microscopy technique. The measurement results show local inhomogeneities. The roughness distributions measured are then converted into their equivalent sand grain roughness ks,eq to permit an evaluation of the impact on aerodynamic losses. The numerical study is performed using the computational fluid dynamics (CFD)-solver turbomachinery research aerodynamics computational environment (TRACE) which was validated before with the existing data from rig experiments. It is observed that the influence of the surface roughness on the turbine efficiency is significant at take-off but negligible at cruise. A detailed analysis on the aerodynamics at take-off shows that very rough airfoils lead to higher profile and secondary loss. Due to the higher disturbances present in flows circulating over rough walls, the transition occurs earlier, and the momentum thickness increases in the turbulent boundary layer. The service-induced roughness structures cause an efficiency drop in the LPT of ηT=−0.16% compared to new parts. A gas path analysis showed that this results in an increased fuel flow of Δm˙f=+0.06% and an exhaust gas temperature (EGT) rise of ΔEGT=+1.2K for fixed engine pressure ratio which is equivalent to roughly 4% of the typical EGT margin of a fully refurbished engine. This result stresses the importance of roughness-induced loss in LPTs.


2016 ◽  
Vol 6 (01) ◽  
pp. 5218
Author(s):  
Laxmi Mohandas ◽  
Anju T. R. ◽  
Sarita G. Bhat*

An assortment of redox-active phenazine compounds like pyocyanin with their characteristic blue-green colour are synthesized by Pseudomonas aeruginosa, Gram-negative opportunistic pathogens, which are also considered one of the most commercially valuable microorganisms. In this study, pyocyanin from Pseudomonas aeruginosa BTRY1 from food sample was assessed for its antibiofilm activity by micro titer plate assay against strong biofilm producers belonging to the genera Bacillus, Staphylococcus, Brevibacterium and Micrococcus. Pyocyanin inhibited biofilm activity in very minute concentrations. This was also confirmed by Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Both SEM and CLSM helped to visualize the biocontrol of biofilm formation by eight pathogens. The imaging and quantification by CLSM also established the impact of pyocyanin on biofilm-biocontrol mainly in the food industry.


Cellulose ◽  
2019 ◽  
Vol 26 (18) ◽  
pp. 9645-9659 ◽  
Author(s):  
Caterina Palange ◽  
Marcus A. Johns ◽  
David J. Scurr ◽  
Jonathan S. Phipps ◽  
Stephen J. Eichhorn

Abstract Microfibrillated cellulose (MFC) is a highly expanded, high surface area networked form of cellulose-based reinforcement. Due to the poor compatibility of cellulose with most common apolar thermoplastic matrices, the production of cellulose-reinforced composites in industry is currently limited to polar materials. In this study, a facile water-based chemistry, based on the reaction of MFC with tannic acid and subsequent functionalisation with an alkyl amine, is used to render the surface of the MFC fibrils hydrophobic and enhance the dispersion of the cellulose-based filler into an apolar thermoplastic matrix. The level of dispersion of the compatibilized MFC reinforced composites was evaluated using Time of Flight Secondary Ion Mass Spectrometry and multi-channel Spectral Confocal Laser Scanning Microscopy. The agglomeration of cellulosic filler within the composites was reduced by functionalising the surface of the MFC fibrils with tannic acid and octadecylamine. The resulting composites exhibited an increase in modulus at a high cellulose content. Despite the dispersion of a large portion of the functionalised filler, the presence of some remaining aggregates affected the impact properties of the composites produced.


2019 ◽  
Vol 44 (3) ◽  
pp. 281-288 ◽  
Author(s):  
KY Kyaw ◽  
M Otsuki ◽  
MS Segarra ◽  
N Hiraishi ◽  
J Tagami

SUMMARY Objective: To investigate the effect of calcium-phosphate–based desensitizers, Teethmate AP paste (TMAP) and Teethmate Desensitizer (TMD) (Kuraray Noritake Dental, Tokyo, Japan), on the prevention of staining on acid-eroded enamel. Methods and Materials: Forty polished enamel samples (4×4×1 mm) from bovine incisors were randomly divided into five groups (n=8). After immersion in 50 mL of 0.5% citric acid (pH 2.5) for 15 minutes to form acid-eroded surfaces, the surfaces were subjected to different treatments with TMAP, TMD, and NaF (0.21% means 950 ppm) for five minutes. Another eroded group was not treated with desensitizer. For the control group, the samples were not eroded or treated. All the samples were stored in artificial saliva (AS) at pH 7.2 for 24 hours at 37°C. The TMAP, TMD, or NaF was reapplied at eight and 16 hours during the 24 hours of storage time. The surface roughness (Sa) was evaluated following ISO 25178 for surface texture using confocal laser scanning microscopy (VK-X 150 series, Keyence, Osaka, Japan) before acid erosion, after acid erosion, and after 24 hours of incubation in AS. Afterward, the color difference was measured with a dental colorimeter (Shade Eye NCC, Shofu, Kyoto, Japan) before and after staining with tea solution. Results: One-way repeated measures analysis of variance showed that acid erosion significantly increased Sa (p<0.001). TMAP- and TMD-treated groups exhibited lower Sa values than the NaF group and the no-desensitizer treatment group. The greatest staining was observed in the NaF group and the no-desensitizer group, while the TMAP and TMD groups significantly decreased the formation of stains. Conclusions: Acid-eroded enamel increased surface roughness and tended to absorb more stains. However, the application of TMAP and TMD moderated the roughness and thus prevented the formation of extrinsic stains.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Jan Philipp Heners ◽  
Damian M. Vogt ◽  
Christian Frey ◽  
Graham Ashcroft

Abstract The impact of the unsteadiness in the considered turbulence quantities on the numerical prediction of the aeroelastic behavior of a low-pressure turbine (LPT) rotor blade is evaluated by means of a numerical study. In this context, one of the main objectives of this work is to compare different nonlinear harmonic balance (HB) approaches—one neglecting and one considering the unsteadiness in the employed turbulence models—with a conventional nonlinear solver of the unsteady Reynolds-averaged Navier–Stokes (URANS) equations in the time domain. In order to avoid unphysical oscillations in the turbulence quantities caused by the Gibbs phenomenon in the chosen HB approach, a filter method based on the Lanczos filter is developed. The developed filter method is applied in the course of the HB simulations considering the unsteadiness in the underlying turbulence model. Furthermore, the impact of its application on the solution of the flow field and on the unsteady surface pressure of the rotor blade, in particular, is discussed in the context of this work.


Cosmetics ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 32
Author(s):  
Samia Almoughrabie ◽  
Chrisse Ngari ◽  
Romain Briandet ◽  
Valérie Poulet ◽  
Florence Dubois-Brissonnet

The reliability of the challenge test depends, among other parameters, on the spatial distribution of microorganisms in the matrix. The present study aims to quickly identify factors that are susceptible to impair a uniform distribution of inoculated bacteria in cosmetic matrices in this context. We used mosaic confocal laser scanning microscopy (M-CLSM) to obtain rapid assessment of the impact of the composition and viscosity of cosmetic matrices on S. aureus spatial distribution. Several models of cosmetic matrices were formulated with different concentrations of two thickeners and were inoculated with three S. aureus strains having different levels of hydrophobicity. The spatial distribution of S. aureus in each matrix was evaluated according to the frequency distribution of the fluorescence values of at least 1350 CLSM images. We showed that, whatever the thickener used, an increasingly concentration of thickener results in increasingly bacterial clustered distribution. Moreover, higher bacterial hydrophobicity also resulted in a more clustered spatial distribution. In conclusion, CLSM-based method allows a rapid characterization of bacterial spatial distribution in complex emulsified systems. Both matrix viscosity and bacterial surface hydrophobicity affect the bacterial spatial distribution which can have an impact on the reliability of bacterial enumeration during challenge test.


2021 ◽  
Vol 23 (2) ◽  
pp. 85-91
Author(s):  
Guilherme Ortiz Pinto Cruz ◽  
Larissa Martins Costa ◽  
Cesar Penazzo Lepri ◽  
Ruchele Dias Nogueira ◽  
Regina Guenka Palma-Dibb ◽  
...  

AbstractThe aim of this study was to evaluate the color stability and the surface roughness of different composites brushed with toothpastes presenting different levels of abrasivity. Thirty discs of each material were obtained using michohybrid composites (Brilliant NG and Charisma Diamond) and a nanocomposite (Filtek Z350XT). The initial color (CIELab) and surface roughness (confocal laser scanning microscopy) of resin discs were evaluated. Afterwards, 10 specimens per group were brushed with the following dentifrices: Maximum Cavity Protection, Sensodyne Repair & Protect and Colgate Sensitive Pro-Relief. Brushing was performed with an electric toothbrush equipped with soft bristle head, with standard power and weight, for 30 minutes. Every 30 seconds, 1.0 ml of the slurry was injected between the bristles of the brush and the specimen. After abrasive challenge, the samples had their color and roughness reevaluated. Data were submitted to the Kruskal-Wallis test (color change) or the t-test (surface roughness). The level of significance was 5%. Results: Brushing did not significantly change the color of the composites tested in the study herein . On the other hand, the surface roughness of the composites was significantly affected by the abrasive challenge, regardless of the toothpaste used. The surface roughness change was similar for all the composites. The abrasive challenge with the toothpastes Maximum Cavity protection, Sensodyne Repair & Protect and Colgate Sensitive Pro-Relief was not able to significantly change the color of the composite resins. Nevertheless, the abrasive challenges significantly altered the surface roughness of all the evaluated composites. However, the changes in surface roughness were statistically similar in the microhybrid and nanofilled composites. Keywords: Composites Resins. Dentifrices. Color. ResumoO objetivo deste estudo foi avaliar a estabilidade de cor e a rugosidade superficial de diferentes resinas compostas escovadas com dentifrícios de diferentes níveis de abrasividade. Trinta discos de cada material foram obtidos utilizando compósitos micro-híbridos (Brilliant NG e Charisma Diamond) e um nanocompósito (Filtek Z350XT). A cor inicial (CIELab) e a rugosidade superficial (microscopia confocal de varredura a laser) dos discos de resina foram avaliadas. Em seguida, 10 amostras por grupo foram escovadas com os dentifrícios Máxima Proteção Anticáries, Sensodyne Repair & Protect e Colgate Sensitive Pro-Alívio. A escovação foi realizada com uma escova elétrica com cabeça de cerdas macias, com potência e peso padronizados, durante 30 minutos. A cada 30 segundos, 1,0 ml da pasta era injetada entre as cerdas da escova e a amostra. Após o desafio abrasivo, as amostras tiveram sua cor e rugosidade reavaliadas. Os dados foram submetidos ao teste de Kruskal-Wallis (alteração de cor) ou ao teste t (rugosidade da superfície) (α=5%). A escovação não alterou significativamente a cor dos compósitos. Por outro lado, a rugosidade superficial dos compósitos foi significativamente afetada pelo desafio abrasivo, independentemente do dentifrício utilizado. A alteração da rugosidade superficial foi semelhante para todos os compósitos. O desafio abrasivo com a Máxima Proteção Anticáries, o Sensodyne Repair & Protect e o Colgate Sensitive Pro-Alívio não foi capaz de alterar significativamente a cor das resinas. Diferentemente, os desafios abrasivos alteraram significativamente a rugosidade superficial de todos os compósitos avaliados. No entanto, as mudanças na rugosidade foram estatisticamente semelhantes nos compósitos micro-híbridos e nanoparticulado. Palavras-chave: Resinas Compostas. Dentifrícios. Cor.


2018 ◽  
Vol 20 (4) ◽  
pp. 238
Author(s):  
Júlia Bazaga Ferreira ◽  
Gabriella Rodovalho Paiva ◽  
Vinícius Rangel Geraldo-Martins ◽  
Juliana Jendiroba Faraoni ◽  
Regina Guenka Palma Dibb ◽  
...  

O objetivo deste trabalho in vitro foi avaliar a influência de diferentes agentes remineralizantes no tratamento de lesões erosivas em esmalte. Foram confeccionados espécimes de 4mmx4mm e 3 mm de espessura a partir da superfície vestibular de incisivos bovinos (n=10) e divididos aleatoriamente em 4 grupos. G1=aplicação do dentifrício remineralizante, G2= aplicação do agente potencializador remineralizante, G3= dentifrício remineralizante + agente potencializador remineralizante, G4=aplicação de verniz fluoretado (controle positivo), G5=nenhum tratamento (controle negativo). Os espécimes foram imersos em refrigerante durante um período de 10 dias. A rugosidade superficial foi analisada por meio de microscopia confocal de varredura a laser. Os dados foram analisados quanto à homogeneidade (Levene’s) e normalidade (Kolmogorov- Smirnov). Foram realizados testes paramétricos com análise de variância a dois critérios: fator tempo e fator tratamento, e pós-teste de Tukey para diferenciação das médias. Todos os testes estatísticos tiveram nível de significância de 5% (α=0,05). Os resultados obtidos mostraram diferenças estatisticamente significantes, demonstrando a redução da rugosidade da superfície do esmalte logo após o primeiro tratamento (G3) e para os demais grupos (G1, G2 e G4) somente após o segundo tratamento. Concluiu-se que a utilização de dentifrício composto por silicato de cálcio e fosfato de sódio influenciou na rugosidade do esmalte erodido do dente bovino.Palavras-chave: Dentifrícios. Erosão Dentária. Esmalte Dentário.Abstract The objective of this in vitro study was to evaluate the influence of different remineralizing agents in the treatment of enamel erosive lesions. Specimens of 4mmx4mm and 3mm thickness were made from the buccal surface of bovine incisors (n=10) and randomly divided into 4 groups. G1 = application of the remineralizing dentifrice, G2 = application of the remineralizing agent, G3 = remineralizing dentifrice + remineralizing agente, G4 = application of fluoride varnish (positive control), G5 = no treatment Specimens were immersed in refrigerant solution during a period of 10 days. The surface roughness was analyzed by means of confocal laser scanning microscopy. The data were analyzed for homogeneity (Levene's) and normality (Kolmogorov-Smirnov). Parametric tests with analysis of variance were performed on two criteria: time factor and treatment factor, and Tukey post-test for differentiation of means. All tests were statistically significant at 5% (α = 0.05). The results showed statistically significant difference, demonstrating the reduction of surface roughness after the first treatment (G3) and the other groups (G1, G2 and G4) only after the second treatment. It was concluded that the use of dentifrice composed of calcium silicate and sodium phosphate influenced the roughness of the eroded tooth enamel of the bovine tooth.Keywords: Dentifrices. Tooth Erosion. Tooth Enamel.


2018 ◽  
Vol 760 ◽  
pp. 245-250 ◽  
Author(s):  
Jitka Krejsová ◽  
Magdaléna Doleželová ◽  
Alena Vimmrová

The gypsum mortars with different types of aggregate were studied. The surface roughness of fine aggregates and the fracture surface roughness were evaluated by a confocal laser scanning microscopy. Four gypsum mortars and one gypsum paste were tested. The results from the confocal laser scanning microscopy (CLSM) are compared with the pictures of grain surface taken by a scanning electron microscopy (SEM) and both methods seem to be appropriate for surface evaluation. The influence of the surface aggregate roughness on some gypsum mortar properties is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document