Exergy, Energy, and Gas Flow Analysis of Hydrofractured Shale Gas Extraction

2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Noam Lior

The objectives of this study are to (a) evaluate the exergy and energy demand for constructing a hydrofractured shale gas well and determine its typical exergy and energy returns on investment (ExROI and EROI), and (b) compute the gas flow and intrinsic exergy analysis in the shale gas matrix and created fractures. An exergy system analysis of construction of a typical U.S. shale gas well, which includes the processes and materials exergies (embodied exergy) for drilling, casing and cementing, and hydrofracturing (“fracking”), was conducted. A gas flow and intrinsic exergy numerical simulation and analysis in a gas-containing hydrofractured shale reservoir with its formed fractures was then performed, resulting in the time- and two-dimensional (2D) space-dependent pressure, velocity, and exergy loss fields in the matrix and fractures. The key results of the system analysis show that the total exergy consumption for constructing the typical hydrofractured shale gas well is 35.8 TJ, 49% of which is used for all the drilling needed for the well and casings and further 48% are used for the hydrofracturing. The embodied exergy of all construction materials is about 9.8% of the total exergy consumption. The ExROI for the typical range of shale gas wells in the U.S. was found to be 7.3–87.8. The embodied energy of manufactured materials is significantly larger than their exergy, so the total energy consumption is about 8% higher than the exergy consumption. The intrinsic exergy analysis showed, as expected, very slow (order of 10−9 m/s) gas flow velocities through the matrix, and consequently very small flow exergy losses. It clearly points to the desirability of exploring fracking methods that increase the number and length of effective fractures, and they increase well productivity with a relatively small flow exergy penalty.

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21 ◽  
Author(s):  
Zhiqiang Li ◽  
Zhilin Qi ◽  
Wende Yan ◽  
Zuping Xiang ◽  
Xiang Ao ◽  
...  

Production simulation is an important method to evaluate the stimulation effect of refracturing. Therefore, a production simulation model based on coupled fluid flow and geomechanics in triple continuum including kerogen, an inorganic matrix, and a fracture network is proposed considering the multiscale flow characteristics of shale gas, the induced stress of fracture opening, and the pore elastic effect. The complex transport mechanisms due to multiple physics, including gas adsorption/desorption, slip flow, Knudsen diffusion, surface diffusion, stress sensitivity, and adsorption layer are fully considered in this model. The apparent permeability is used to describe the multiple physics occurring in the matrix. The model is validated using actual production data of a horizontal shale gas well and applied to predict the production and production increase percentage (PIP) after refracturing. A sensitivity analysis is performed to study the effects of the refracturing pattern, fracture conductivity, width of stimulated reservoir volume (SRV), SRV length of new and initial fractures, and refracturing time on production and the PIP. In addition, the effects of multiple physics on the matrix permeability and production, and the geomechanical effects of matrix and fracture on production are also studied. The research shows that the refracturing design parameters have an important influence on the PIP. The geomechanical effect is an important cause of production loss, while slippage and diffusion effects in matrix can offset the production loss.


2014 ◽  
Vol 54 (1) ◽  
pp. 15
Author(s):  
Vamegh Rasouli

The Arrowsmith–2 well is the first dedicated shale gas well in WA. The well is situated in the central eastern area of Permit EP413, with the surface location being about 30 km north of the township of Eneabba. Norwest, as the operator and on behalf of its joint venture partners, drilled the Arrowsmith–2 exploration well in mid-2011. In 2012 the well was subsequently perforated and fracture stimulated in five discrete stages across four formations: the High Cliff Sand Stone (HCSS); Irwin River Coal Measures (IRCM); Carynginia Formation; and, Kockatea Shale. The fraccing results have shown excellent rates of gas flow for the size of the intervals fracced, and have produced oil and/or condensate to surface from the two intervals flowed back. This paper discusses some drilling operation and design aspects of Arrowsmith–2. A review of the regional geology, basic well design, and well objectives will be given. The importance of geomechanical studies for minimising wellbore-related problems during drilling and after that for hydraulic fracturing operation will be discussed, and the results of the studies undertaken presented. The wireline logging suite run in this well was used to interpret the formations’ mechanical properties. Also, laboratory tests were performed to estimate hydro-mechanical properties of the formations. The lessons from drilling this well will be used for drilling future wells in the area with the objective of saving time and costs.


2020 ◽  
Vol 17 (1) ◽  
pp. 62-69
Author(s):  
A.A. Ibrahim ◽  
A.A. Adedeji

Current practices of planning and designing of buildings in Nigeria do not consider the thermal comfort, the building energy and exergy demand. There is a need for better understanding of exergy analysis to improve the quality match between building energy demand and supply. The aim of this study is to estimate the exergy consumption value for a hollow sandcrete and a burnt brick-walled structure in a tropical sub-region. The properties of the building were assessed, eQuest software was used to estimate the energy demand of the respective buildings and the exergy analysis was conducted using the exergetic factor of electricity. The cumulative exergy consumptions of the existing sandcrete-walled building, the modelled sandcrete and the burnt brick-walled building were found to be 246,074.4 MJ/year, 128,646 MJ/year, and 128,595.6 MJ/year respectively. The modelled sandcrete-walled building, as well as the burnt brick-walled building, were found to be 48% more energy efficient than the existingbuilding as a result of improving the airtightness of the building, reducing the solar heat gain, and utilizing extremely efficient systems. However, the exergy analysis suggested that the hollow burnt brick-walled building perform better than the hollow sandcrete-walled building. Keywords:  Building, electricity, energy, eQuest, exergy, sandcrete.


2013 ◽  
Vol 16 (02) ◽  
pp. 216-228 ◽  
Author(s):  
Y.. Cho ◽  
O.G.. G. Apaydin ◽  
E.. Ozkan

Summary This paper presents an investigation of the effect of pressure-dependent natural-fracture permeability on production from shale-gas wells. The motivation of the study is to provide data for the discussion of whether it is crucial to pump proppant into natural fractures in shale plays. Experiments have been conducted on Bakken-shale core samples to select appropriate correlations to represent fracture conductivity as a function of pressure (the actual characterization of fracture conductivity under stress for a specific formation is not an objective of the study). Correlations have been used in a flow model to demonstrate the potential impact of natural-fracture closure as pressure drops during production. Although the correlations indicate up to an 80% reduction in fracture permeability over practical ranges of pressure, the results of the flow model do not warrant the claims that fracture closing plays a significant role in the productivity losses of shale-gas wells. A history match of the performances of two wells in the Barnett and Haynesville formations also indicates that the effect of pressure-dependent natural-fracture permeability on shale-gas-well production is a function of the permeability of the matrix system. If the matrix system is too tight, then the retained permeability of the natural fractures may still be sufficient for the available volume of the fluid when the system pressure drops.


2020 ◽  
Vol 39 (6) ◽  
pp. 8823-8830
Author(s):  
Jiafeng Li ◽  
Hui Hu ◽  
Xiang Li ◽  
Qian Jin ◽  
Tianhao Huang

Under the influence of COVID-19, the economic benefits of shale gas development are greatly affected. With the large-scale development and utilization of shale gas in China, it is increasingly important to assess the economic impact of shale gas development. Therefore, this paper proposes a method for predicting the production of shale gas reservoirs, and uses back propagation (BP) neural network to nonlinearly fit reservoir reconstruction data to obtain shale gas well production forecasting models. Experiments show that compared with the traditional BP neural network, the proposed method can effectively improve the accuracy and stability of the prediction. There is a nonlinear correlation between reservoir reconstruction data and gas well production, which does not apply to traditional linear prediction methods


2015 ◽  
Vol 8 (1) ◽  
pp. 149-154 ◽  
Author(s):  
Jun Gu ◽  
Ju Huang ◽  
Su Zhang ◽  
Xinzhong Hu ◽  
Hangxiang Gao ◽  
...  

The purpose of this study is to improve the cementing quality of shale gas well by mud cake solidification, as well as to provide the better annular isolation for its hydraulic fracturing development. Based on the self-established experimental method and API RP 10, the effects of mud cake solidifiers on the shear strength at cement-interlayer interface (SSCFI) were evaluated. After curing for 3, 7, 15 and 30 days, SSCFI was remarkably improved by 629.03%, 222.37%, 241.43% and 273.33%, respectively, compared with the original technology. Moreover, the compatibility among the mud cake solidifier, cement slurry, drilling fluid and prepad fluid meets the safety requirements for cementing operation. An application example in a shale gas well (Yuanye HF-1) was also presented. The high quality ratio of cementing quality is 93.49% of the whole well section, while the unqualified ratio of adjacent well (Yuanba 9) is 84.46%. Moreover, the cementing quality of six gas-bearing reservoirs is high. This paper also discussed the mechanism of mud cake solidification. The reactions among H3AlO42- and H3SiO4- from alkali-dissolved reaction, Na+ and H3SiO4- in the mud cake solidifiers, and Ca2+ and OH- from cement slurry form the natrolite and calcium silicate hydrate (C-S-H) with different silicate-calcium ratio. Based on these, SSCFI and cementing quality were improved.


2016 ◽  
Author(s):  
Douglas B. Kent ◽  
◽  
Matthias Kohler ◽  
Meagan Mnich ◽  
Christopher H. Conaway ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 325
Author(s):  
Giada Giuffrida ◽  
Maurizio Detommaso ◽  
Francesco Nocera ◽  
Rosa Caponetto

The renewed attention paid to raw earth construction in recent decades is linked to its undoubted sustainability, cost-effectiveness, and low embodied energy. In Italy, the use of raw earth as a construction material is limited by the lack of a technical reference standard and is penalised by the current energy legislation for its massive behaviour. Research experiences, especially transoceanic, on highly performative contemporary buildings made with natural materials show that raw earth can be used, together with different types of reinforcements, to create safe, earthquake-resistant, and thermally efficient buildings. On the basis of experimental data of an innovative fibre-reinforced rammed earth material, energy analyses are developed on a rammed earth building designed for a Mediterranean climate. The paper focuses on the influences that different design solutions, inspired by traditional bioclimatic strategies, and various optimised wall constructions have in the improvement of the energy performance of the abovementioned building. These considerations are furthermore compared with different design criteria aiming at minimising embodied carbon in base material choice, costs, and discomfort hours. Results have shown the effectiveness of using the combination of massive rammed earth walls, night cross ventilation, and overhangs for the reduction of energy demand for space cooling and the improvement of wellbeing. Finally, the parametric analysis of thermal insulation has highlighted the economic, environmental, and thermophysical optimal solutions for the rammed earth envelope.


Sign in / Sign up

Export Citation Format

Share Document