Turbine Tone Noise Prediction Using a Linearized Computational Fluid Dynamics Solver: Comparison With Measurements

2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Adolfo Serrano González ◽  
José Ramón Fernández Aparicio

The capability of a linearized computational fluid dynamics (CFD) method for predicting turbine tone noise is investigated through comparison with measurements. To start with, a benchmark problem on flat plates is presented, and results are put together with those published by other authors. Then, numerical predictions are compared with measurements from two low-pressure turbines (LPTs), which have been tested in different facilities. The first specimen is a three-stage cold flow rig, noise tested in the Centro de Tecnologías Aeronáuticas (CTA) facility (Bilbao, Spain) in 2012 and funded by the Clean Sky EU Program. The second is the advanced near-term low emissions (ANTLE) LPT rig, full-scale, cold flow, noise tested in the twin shaft test facility (TSTF) in Rolls-Royce (Derby, UK) in 2005 and funded by the SILENCE(R) EU Funded Program. The comparison includes multistage effects, clocking sensitivities, and acoustic scattering through outlet guide vanes (OGVs).

Author(s):  
Adolfo Serrano González ◽  
José Ramón Fernández Aparicio

The capability of a Linearized CFD Method for predicting turbine tone noise is investigated through comparison with measurements. To start with, a benchmark problem on flat plates is presented, and results are put together with those published by other authors. Then, numerical predictions are compared with measurements from two Low Pressure Turbines (LPTs), which have been tested in different facilities. The first specimen is a three stage cold flow rig, noise tested in the CTA facility (Bilbao, Spain) in 2012, and funded by the Clean Sky EU Program. The second is the ANTLE LPT rig, full scale, cold flow, noise tested in the TSTF in Rolls-Royce (Derby, United Kingdom) in 2005 and funded by the SILENCE(R) EU Funded Program. The comparison includes multi-stage effects, clocking sensitivities and acoustic scattering through Outlet Guide Vanes (OGVs).


Author(s):  
Riccardo Da Soghe ◽  
Cosimo Bianchini ◽  
Antonio Andreini ◽  
Lorenzo Mazzei ◽  
Giovanni Riccio ◽  
...  

Combustor liner of present gas turbine engines is subjected to high thermal loads as it surrounds high temperature combustion reactants and is hence facing the related radiative load. This generally produces high thermal stress levels on the liner, strongly limiting its life expectations and making it one of the most critical components of the entire engine. The reliable prediction of such thermal loads is hence a crucial aspect to increase the flame tube life span and to ensure safe operations. The present study aims at investigating the aerothermal behavior of a GE Dry Low NOx (DLN1) class flame tube and in particular at evaluating working metal temperatures of the liner in relation to the flow and heat transfer state inside and outside the combustion chamber. Three different operating conditions have been accounted for (i.e., lean–lean partial load, premixed full load, and primary load) to determine the amount of heat transfer from the gas to the liner by means of computational fluid dynamics (CFD). The numerical predictions have been compared to experimental measurements of metal temperature showing a good agreement between CFD and experiments.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Sulistiya Sulistiya ◽  
Alief Sadlie Kasman

AbstractNumerical simulation using Computational Fluid Dynamics (CFD) method is one way of predicting airflow characteristics on the model. This method is widely used because it is relatively inexpensive and faster in getting desired results compared with performing direct testing. The correctness of a computational simulation output is highly dependent on the input and how it was processed. In this paper, simulation is done on Onera M6 Wing, to investigate the effect of a turbulence model’s application on the accuracy of the computational result. The choice of Onera M6 Wing as a simulation’s model is due to its extensive database of testing results from various wind tunnels in the world. Among Turbulence models used are Spalart-Allmaras, K-Epsilon, K-Omega, and SST.Keywords: CFD, fluent, Model, Turbulence, Onera M6, Spalart-Allmaras, K-Epsilon, K-Omega, SST.AbstraksSimulasi numerik dengan menggunakan metode Computational Fluid Dynamics (CFD) merupakan salah satu cara untuk memprediksi karakteristik suatu aliran udara yang terjadi pada model. Metode ini banyak digunakan karena sifatnya yang relatif murah dan cepat untuk mendapatkan hasil dibandingkan dengan melakukan pengujian langsung. Benar tidak hasil sebuah simulasi komputasi sangat tergantung pada inputan yang diberikan serta cara memproses data inputan tersebut. Pada tulisan ini dilakukan simulasi dengan menggunakan sayap onera M6 dengan tujuan untuk mengetahui pengaruh penggunaan model turbulensi terhadap keakuratan hasil komputasi. Pilihan sayap onera M6 sebagai model simulasi dikarenakan model tersebut sudah memiliki database hasil pengujian yang cukup lengkap dan sudah divalidasi dari berbagai terowongan angin di dunia. Model turbulensi yang digunakan diantaranya Spalart-Allmaras, K-Epsilon, K-Omega dan SST.Kata Kunci : CFD, fluent, Model, Turbulensi, Onera M6, Spalart-Allmaras, K-Epsilon, K-Omega, SST.


2021 ◽  
Vol 2053 (1) ◽  
pp. 012013
Author(s):  
N. Abdul Settar ◽  
S. Sarip ◽  
H.M. Kaidi

Abstract Wells turbine is an important component in the oscillating water column (OWC) system. Thus, many researchers tend to improve the performance via experiment or computational fluid dynamics (CFD) simulation, which is cheaper. As the CFD method becomes more popular, the lack of evidence to support the parameters used during the CFD simulation becomes a big issue. This paper aims to review the CFD models applied to the Wells turbine for the OWC system. Journal papers from the past ten years were summarized in brief critique. As a summary, the FLUENT and CFX software are mostly used to simulate the Wells turbine flow problems while SST k-ω turbulence model is the widely used model. A grid independence test is essential when doing CFD simulation. In conclusion, this review paper can show the research gap for CFD simulation and can reduce the time in selecting suitable parameters when involving simulation in the Wells turbine.


2010 ◽  
Vol 4 (4) ◽  
pp. 657-661 ◽  
Author(s):  
Mohammed Zubair ◽  
Vizy Nazira Riazuddin ◽  
Mohammed Zulkifly Abdullah ◽  
Rushdan Ismail ◽  
Ibrahim Lutfi Shuaib ◽  
...  

Abstract Background: It is of clinical importance to examine the nasal cavity pre-operatively on surgical treatments. However, there is no simple and easy way to measure airflow in the nasal cavity. Objectives: Visualize the flow features inside the nasal cavity using computational fluid dynamics (CFD) method, and study the effect of different breathing rates on nasal function. Method: A three-dimensional nasal cavity model was reconstructed based on computed tomographic images of a healthy Malaysian adult nose. Navier-Stokes and continuity equations for steady airflow were solved numerically to examine the inspiratory nasal flow. Results: The flow resistance obtained varied from 0.026 to 0.124 Pa.s/mL at flow-rate from 7.5 L/min to 40 L/min. Flow rates by breathing had significant influence on airflow velocity and wall shear-stress in the vestibule and nasal valve region. Conclusion: Airflow simulations based on CFD is most useful for better understanding of flow phenomenon inside the nasal cavity.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Umberto Stuppioni ◽  
Alessio Suman ◽  
Michele Pinelli ◽  
Alessandro Blum

Abstract This paper addresses the problem of computational fluid dynamics (CFD) modeling of gaseous cavitation (GC) in lubricating positive-displacement pumps (PDPs). It is important for designers and analysts to predict the dynamic features of air release/dissolution processes which characterize this phenomenon, along with their effects on filling capability and noise-vibration-harshness behavior of the machine. The focus is on the empirical tuning of the commercial homogeneous-flow cavitation model known as dissolved gas model (DGM). Considering an automotive case study of a balanced vane pump (BVP), the effects of air modeling on numerical predictions of discharge flow/pressure ripple and volumetric efficiency have been studied. The tuning time parameters of the model have been correlated to the machine Reynolds number as part of a simplified theoretical background based on dimensional analysis. Considering experimental data at different operating conditions, the tuned model has shown a good capacity in predicting the pressure ripple and the flowrate at the discharge of the pump.


Author(s):  
David Pointer ◽  
Tanju Sofu ◽  
Yousry Gohar

A liquid Lead-Bismuth Eutectic (LBE) spallation target has been developed for the subcritical multiplier (SCM) station of the Accelerator-Driven Test Facility (ADTF). Target design objectives and constraints were defined and utilized to satisfy the engineering requirements and to minimize the design development time and cost. Physics, heat transfer, hydraulics, structural, radiological and safety analyses were iterated to arrive at the final design concept. The optimization of the thermal hydraulic characteristics of the target concept through the parametric evaluation of multiple design alternatives using Computational Fluid Dynamics (CFD) to predict fluid dynamics and heat transfer behaviors is described in this paper.


Sign in / Sign up

Export Citation Format

Share Document