Using Nonlinear Kinematic Hardening Material Models for Elastic–Plastic Ratcheting Analysis

2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Jürgen Rudolph ◽  
Tim Gilman ◽  
Bill Weitze ◽  
Adrian Willuweit ◽  
Arturs Kalnins

Applicable design codes for power plant components and pressure vessels demand for a design check against progressive plastic deformation. In the simplest case, this demand is satisfied by compliance with shakedown rules in connection with elastic analyses. The possible noncompliance implicates the requirement of ratcheting analyses on elastic–plastic basis. In this case, criteria are specified on maximum allowable accumulated growth strain without clear guidance on what material models for cyclic plasticity are to be used. This is a considerable gap and a challenge for the practicing computer-aided engineering engineer. As a follow-up to two independent previous papers PVP2013-98150 ASME (Kalnins et al., 2013, “Using the Nonlinear Kinematic Hardening Material Model of Chaboche for Elastic-Plastic Ratcheting Analysis,” ASME Paper No. PVP2013-98150.) and PVP2014-28772 (Weitze and Gilman, 2014, “Additional Guidance for Inelastic Ratcheting Analysis Using the Chaboche Model,” ASME Paper No. PVP2014-28772.), it is the aim of this paper to close this gap by giving further detailed recommendation on the appropriate application of the nonlinear kinematic material model of Chaboche on an engineering scale and based on implementations already available within commercial finite element codes such as ANSYS® and ABAQUS®. Consistency of temperature-dependent runs in ANSYS® and ABAQUS® is to be checked. All three papers together constitute a comprehensive guideline for elastoplastic ratcheting analysis. The following issues are examined and/or referenced: (1) application of monotonic or cyclic material data for ratcheting analysis based on the Chaboche material model, (2) discussion of using monotonic and cyclic data for assessment of the (nonstabilized) cyclic deformation behavior, (3) number of backstress terms to be applied for consistent ratcheting results, (4) consideration of the temperature dependency (TD) of the relevant material parameters, (5) consistency of temperature-dependent runs in ANSYS® and ABAQUS®, (6) identification of material parameters dependent on the number of backstress terms, (7) identification of material data for different types of material (carbon steel, austenitic stainless steel) including the appropriate determination of the elastic limit, (8) quantification of conservatism of simple elastic-perfectly plastic (EPP) behavior, (9) application of engineering versus true stress–strain data, (10) visual checks of data input consistency, and (11) appropriate type of allowable accumulated growth strain. This way, a more accurate inelastic analysis methodology for direct practical application to real world examples in the framework of the design code conforming elastoplastic ratcheting check is proposed.

Author(s):  
Tim Gilman ◽  
Bill Weitze ◽  
Jürgen Rudolph ◽  
Adrian Willuweit ◽  
Arturs Kalnins

Applicable design codes for power plant components and pressure vessels demand for a design check against progressive plastic deformation. In the simplest case, this demand is satisfied by compliance with shakedown rules in connection with elastic analyses. The possible non-compliance implicates the requirement of ratcheting analyses on elastic-plastic basis. In this case, criteria are specified on maximum allowable accumulated growth strain without clear guidance on what material models for cyclic plasticity are to be used. This is a considerable gap and a challenge for the practicing CAE (Computer Aided Engineering) engineer. As a follow-up to two independent previous papers PVP2013-98150 ASME [1] and PVP2014-28772 [2] it is the aim of this paper to close this gap by giving further detailed recommendation on the appropriate application of the nonlinear kinematic material model of Chaboche on an engineering scale and based on implementations already available within commercial finite element codes such as ANSYS® and ABAQUS®. Consistency of temperature-dependent runs in ANSYS® and ABAQUS® is to be checked. All three papers together constitute a comprehensive guideline for elasto-plastic ratcheting analysis. The following issues are examined and/or referenced: • Application of monotonic or cyclic material data for ratcheting analysis based on the Chaboche material model • Discussion of using monotonic and cyclic data for assessment of the (non-stabilized) cyclic deformation behavior • Number of backstress terms to be applied for consistent ratcheting results • Consideration of the temperature dependency of the relevant material parameters • Consistency of temperature-dependent runs in ANSYS® and ABAQUS® • Identification of material parameters dependent on the number of backstress terms • Identification of material data for different types of material (carbon steel, austenitic stainless steel) including the appropriate determination of the elastic limit • Quantification of conservatism of simple elastic-perfectly plastic behavior • Application of engineering versus true stress-strain data • Visual checks of data input consistency • Appropriate type of allowable accumulated growth strain. This way, a more accurate inelastic analysis methodology for direct practical application to real world examples in the framework of the design code conforming elasto-plastic ratcheting check is proposed.


2012 ◽  
Vol 79 (5) ◽  
Author(s):  
Sunil Neupane ◽  
Samer Adeeb ◽  
Roger Cheng ◽  
James Ferguson ◽  
Michael Martens

The material model proposed in Part I (Neupane et al., 2012, “Modeling the Deformation Response of High Strength Steel Pipelines—Part I: Material Characterization to Model the Plastic Anisotropy,” ASME J. Appl. Mech., 79, p. 051002) is used to study the deformation response of high strength steel. The response of pipes subjected to frost upheaval at a particular point is studied using an assembly of pipe elements, while buckling of pipes is examined using shell elements. The deformation response is obtained using two different material models. The two different material models used were the isotropic hardening material model and the combined kinematic hardening material model. Two sets of material stress-strain data were used for the isotropic hardening material model; data obtained from the longitudinal direction tests and data obtained from the circumferential direction tests. The combined kinematic hardening material model was calibrated to provide an accurate prediction of the stress-strain behavior in both the longitudinal direction and the circumferential direction. The deformation response of a pipe model using the three different material data sets was studied. The sensitivity of the response of pipelines to the choice of a material model and the material data set is studied for the frost upheaval and local buckling.


Author(s):  
Arturs Kalnins ◽  
Jürgen Rudolph ◽  
Adrian Willuweit

Two calibration processes are selected for determining the parameters of the Chaboche nonlinear kinematic hardening (NLK) material model for stainless steel. One process is manual that requires no outside software and the other follows a finite element software. The basis of the calibration is the monotonic stress-strain curve obtained from a tension specimen subjected to unidirectional loading. The Chaboche model is meant for elastic-plastic ratcheting analysis that is included in commonly used design codes. It is chosen because it is known that it can represent realistically the materials that are used for power plant components and pressure vessels. To test the calibration results, a pressurized cylindrical shell subjected to thermal cycling is selected as an example. It was found that, for the example, no more than four Chaboche components should be used in the determination of its parameters.


2020 ◽  
Vol 36 (2) ◽  
pp. 167-176 ◽  
Author(s):  
Daniele Barbera ◽  
Haofeng Chen

ABSTRACTStructural integrity plays an important role in any industrial activity, due to its capability of assessing complex systems against sudden and unpredicted failures. The work here presented investigates an unexpected new mechanism occurring in structures subjected to monotonic and cyclic loading at high temperature creep condition. An unexpected accumulation of plastic strain is observed to occur, within the high-temperature creep dwell. This phenomenon has been observed during several full inelastic finite element analyses. In order to understand which parameters make possible such behaviour, an extensive numerical study has been undertaken on two different notched bars. The notched bar has been selected due to its capability of representing a multiaxial stress state, which is a practical situation in real components. Two numerical examples consisting of an axisymmetric v-notch bar and a semi-circular notched bar are considered, in order to investigate different notches severity. Two material models have been considered for the plastic response, which is modelled by both Elastic-Perfectly Plastic and Armstrong-Frederick kinematic hardening material models. The high-temperature creep behaviour is introduced using the time hardening law. To study the problem several results are presented, as the effect of the material model on the plastic strain accumulation, the effect of the notch severity and the mesh element type and sensitivity. All the findings further confirm that the phenomenon observed is not an artefact but a real mechanism, which needs to be considered when assessing off-design condition. Moreover, it might be extremely dangerous if the cyclic loading condition occurs at such a high loading level.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Mahdi Kiani ◽  
Roger Walker ◽  
Saman Babaeidarabad

One of the most important components in the hydraulic fracturing is a type of positive-displacement-reciprocating-pumps known as a fracture pump. The fluid end module of the pump is prone to failure due to unconventional drilling impacts of the fracking. The basis of the fluid end module can be attributed to cross bores. Stress concentration locations appear at the bores intersections and as a result of cyclic pressures failures occur. Autofrettage is one of the common technologies to enhance the fatigue resistance of the fluid end module through imposing the compressive residual stresses. However, evaluating the stress–strain evolution during the autofrettage and approximating the residual stresses are vital factors. Fluid end module geometry is complex and there is no straightforward analytical solution for prediction of the residual stresses induced by autofrettage. Finite element analysis (FEA) can be applied to simulate the autofrettage and investigate the stress–strain evolution and residual stress fields. Therefore, a nonlinear kinematic hardening material model was developed and calibrated to simulate the autofrettage process on a typical commercial triplex fluid end module. Moreover, the results were compared to a linear kinematic hardening model and a 6–12% difference between two models was observed for compressive residual hoop stress at different cross bore corners. However, implementing nonlinear FEA for solving the complicated problems is computationally expensive and time-consuming. Thus, the comparison between nonlinear FEA and a proposed analytical formula based on the notch strain analysis for a cross bore was performed and the accuracy of the analytical model was evaluated.


2020 ◽  
Vol 2 (4) ◽  
pp. 11-33
Author(s):  
Anna Pandolfi ◽  
Andrea Montanino

Purpose: The geometries used to conduct numerical simulations of the biomechanics of the human cornea are reconstructed from images of the physiological configuration of the system, which is not in a stress-free state because of the interaction with the surrounding tissues. If the goal of the simulation is a realistic estimation of the mechanical engagement of the system, it is mandatory to obtain a stress-free configuration to which the external actions can be applied. Methods: Starting from a unique physiological image, the search of the stress-free configuration must be based on methods of inverse analysis. Inverse analysis assumes the knowledge of one or more geometrical configurations and, chosen a material model, obtains the optimal values of the material parameters that provide the numerical configurations closest to the physiological images. Given the multiplicity of available material models, the solution is not unique. Results: Three exemplary material models are used in this study to demonstrate that the obtained, non-unique, stress-free configuration is indeed strongly dependent on both material model and on material parameters. Conclusion: The likeliness of recovering the actual stress-free configuration of the human cornea can be improved by using and comparing two or more imaged configurations of the same cornea.


2021 ◽  
Author(s):  
Charles R. Krouse ◽  
Grant O. Musgrove ◽  
Taewoan Kim ◽  
Seungmin Lee ◽  
Muhyoung Lee ◽  
...  

Abstract The Chaboche model is a well-validated non-linear kinematic hardening material model. This material model, like many models, depends on a set of material constants that must be calibrated for it to match the experimental data. Due to the challenge of calibrating these constants, the Chaboche model is often disregarded. The challenge with calibrating the Chaboche constants is that the most reliable method for doing the calibration is a brute force approach, which tests thousands of combinations of constants. Different sampling techniques and optimization schemes can be used to select different combinations of these constants, but ultimately, they all rely on iteratively selecting values and running simulations for each selected set. In the experience of the authors, such brute force methods require roughly 2,500 combinations to be evaluated in order to have confidence that a reasonable solution is found. This process is not efficient. It is time-intensive and labor-intensive. It requires long simulation times, and it requires significant effort to develop the accompanying scripts and algorithms that are used to iterate through combinations of constants and to calculate agreement. A better, more automated method exists for calibrating the Chaboche material constants. In this paper, the authors describe a more efficient, automated method for calibrating Chaboche constants. The method is validated by using it to calibrate Chaboche constants for an IN792 single-crystal material and a CM247 directionally-solidified material. The calibration results using the automated approach were compared to calibration results obtained using a brute force approach. It was determined that the automated method achieves agreeable results that are equivalent to, or supersede, results obtained using the conventional brute force method. After validating the method for cases that only consider a single material orientation, the automated method was extended to multiple off-axis calibrations. The Chaboche model that is available in commercial software, such as ANSYS, will only accept a single set of Chaboche constants for a given temperature. There is no published method for calibrating Chaboche constants that considers multiple material orientations. Therefore, the approach outlined in this paper was extended to include multiple material orientations in a single calibration scheme. The authors concluded that the automated approach can be used to successfully, accurately, and efficiently calibrate multiple material directions. The approach is especially well-suited when off-axis calibration must be considered concomitantly with longitudinal calibration. Overall, the automated Chaboche calibration method yielded results that agreed well with experimental data. Thus, the method can be used with confidence to efficiently and accurately calibrate the Chaboche non-linear kinematic hardening material model.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Sergei Alexandrov ◽  
Woncheol Jeong ◽  
Kwansoo Chung

Using Tresca's yield criterion and its associated flow rule, solutions are obtained for the stresses and strains when a thick-walled tube is subject to internal pressure and subsequent unloading. A bilinear hardening material model in which allowances are made for a Bauschinger effect is adopted. A variable elastic range and different rates under forward and reversed deformation are assumed. Prager's translation law is obtained as a particular case. The solutions are practically analytic. However, a numerical technique is necessary to solve transcendental equations. Conditions are expressed for which the release is purely elastic and elastic–plastic. The importance of verifying conditions under which the Tresca theory is valid is emphasized. Possible numerical difficulties with solving equations that express these conditions are highlighted. The effect of kinematic hardening law on the validity of the solutions found is demonstrated.


Author(s):  
C. Hernandez ◽  
A. Maranon ◽  
I. A. Ashcroft ◽  
J. P. Casas-Rodriguez

Material characterization procedures are often complicated processes. In particular, dynamic material characterization usually requires many complicated and expensive tests. One of the tools used to characterize the behavior of materials under dynamic loading is the Taylor impact test. In this experiment, a flat-ended cylinder of initial uniform cross-sectional area is fired at a rigid target. The terminal geometry of the deformed cylinder is used to determine the material strength at different strain rates. This paper presents the formulation and solution of a first class inverse problem for the identification of the kinematic hardening material model from a Taylor impact test of a steel cylinder. The inverse problem is formulated as an optimization procedure for the determination of the optimal set of the model constants. The input parameter of the procedure is the final shape of a Taylor impact test specimen, in terms of central geometric moments, at a given impact velocity. The output parameters are the material model constants, which are determined by fitting the final shape of a numerically simulated Taylor specimen to the final shape of the experimental specimen. This optimization procedure is performed by a real-coded genetic algorithm. The paper includes a numerical example of the characterization procedure for a steel 1018 Taylor specimen of 8 mm diameter and 20 mm length, impacted at a velocity of 250 m/s. This simulation demonstrates the performance of the algorithm and the ability to estimate the kinematic hardening material model constants.


Sign in / Sign up

Export Citation Format

Share Document