scholarly journals Characteristics of Boundary-Layer Transition and Reynolds-Number Sensitivity of Three-Dimensional Wings of Varying Complexity Operating in Ground Effect

2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Luke S. Roberts ◽  
Mark V. Finnis ◽  
Kevin Knowles

The influence of Reynolds number on the aerodynamic characteristics of various wing geometries was investigated through wind-tunnel experimentation. The test models represented racing car front wings of varying complexity: from a simple single-element wing to a highly complex 2009-specification formula-one wing. The aim was to investigate the influence of boundary-layer transition and Reynolds-number dependency of each wing configuration. The single-element wing showed significant Reynolds-number dependency, with up to 320% and 35% difference in downforce and drag, respectively, for a chordwise Reynolds number difference of 0.81 × 105. Across the same test range, the multi-element configuration of the same wing and the F1 wing displayed less than 6% difference in downforce and drag. Surface-flow visualization conducted at various Reynolds numbers and ground clearances showed that the separation bubble that forms on the suction surface of the wing changes in both size and location. As Reynolds number decreased, the bubble moved upstream and increased in size, while reducing ground clearance caused the bubble to move upstream and decrease in size. The fundamental characteristics of boundary layer transition on the front wing of a monoposto racing car have been established.

Author(s):  
Curt H. Liebert ◽  
Raymond E. Gaugler ◽  
Herbert J. Gladden

Convection cooled turbine vane metal wall temperatures experimentally obtained in a hot cascade for a given one-vane design were compared with wall temperatures calculated with TACT1 and STAN5 computer codes which incorporated various models for predicting laminar-to-turbulent boundary layer transition. Favorable comparisons on both vane surfaces were obtained at high Reynolds number with only one of these transition models. When other models were used, temperature differences between calculated and experimental data obtained at the high Reynolds number were as much as 14 percent in the separation bubble region of the pressure surface. On the suction surface and at lower Reynolds number, predictions and data unsatisfactorily differed by as much as 22 percent. Temperature differences of this magnitude can represent orders of magnitude error in blade life prediction.


Author(s):  
Chenglong Wang ◽  
Lei Wang ◽  
Bengt Sundén ◽  
Valery Chernoray ◽  
Hans Abrahamsson

In the present study, the heat transfer characteristics on the suction and pressure sides of an outlet guide vane (OGV) are investigated by using liquid crystal thermography (LCT) method in a linear cascade. Because the OGV has a complex curved surface, it is necessary to calibrate the LCT by taking into account the effect of viewing angles of the camera. Based on the calibration results, heat transfer measurements of the OGV were conducted. Both on- and off-design conditions were tested, where the incidence angles of the OGV were 25 degrees and −25 degrees, respectively. The Reynolds numbers, based on the axial flow velocity and the chord length, were 300,000 and 450,000. In addition, heat transfer on suction side of the OGV with +40 degrees incidence angle was measured. The results indicate that the Reynolds number and incidence angle have considerable influences upon the heat transfer on both pressure and suction surfaces. For on-design conditions, laminar-turbulent boundary layer transitions are on both sides, but no flow separation occurs; on the contrary, for off-design conditions, the position of laminar-turbulent boundary layer transition is significantly displaced downstream on the suction surface, and a separation occurs from the leading edge on the pressure surface. As expected, larger Reynolds number gives higher heat transfer coefficients on both sides of the OGV.


1998 ◽  
Author(s):  
Garth V. Hobson ◽  
Denis J. Hansen ◽  
David G. Schnorenberg ◽  
Darren V. Grove

A detailed experimental investigation of second-generation, controlled-diffusion, compressor stator blades at an off-design inlet-flow angle was performed in a low-speed cascade wind tunnel primarily using laser-Doppler velocimetry (LDV). The object of the study was to characterize the off-design flowfield and to obtain LDV measurements of the suction surface boundary layer separation which occurred near mid chord. The effect of Reynolds number on the flow separation in the regime of 210,000 to 640,000 was investigated. Surface flow visualization showed that at the low Re. no. the mid-chord separation bubble started laminar and reattached turbulent within 20% chord on the suction side of the blade. The extent of the bubble compared very well with the measured blade surface pressure distribution which showed a classical plateau and then diffusion in the turbulent region. LDV measurements of the flow reversal in the bubble were performed. At the intermediate Re. no. the boundary layer was transitional before the bubble which had decreased significantly in size (down to 10% chord). At the highest Re. no. the flow was turbulent from close to the leading edge, and three-dimensional flow reversal as a result of endwall effects appeared at approximately 80% chord which did not reattach.


Author(s):  
W. J. Solomon

Multiple-element surface hot-film instrumentation has been used to investigate boundary layer development in the 2 stage Low Speed Research Turbine (LSRT). Measurements from instrumentation located along the suction surface of the second stage nozzle at mid-span are presented. These results contrast the unsteady, wake-induced boundary layer transition behaviour for various turbine configurations. The boundary layer development on two new turbine blading configurations with identical design vector diagrams but substantially different loading levels are compared with a previously published result. For the conventional loading (Zweifel coefficient) designs, the boundary layer transition occurred without laminar separation. At reduced solidity, wake-induced transition started upstream of a laminar separation line and an intermittent separation bubble developed between the wake-influenced areas. A turbulence grid was installed upstream of the LSRT turbine inlet to increase the turbulence level from about 1% for clean-inlet to about 5% with the grid. The effect of turbulence on the transition onset location was smaller for the reduced solidity design than the baseline. At the high turbulence level, the amplitude of the streamwise fluctuation of the wake-induced transition onset point was reduced considerably. By clocking the first stage nozzle row relative to the second, the alignment of the wake-street from the first stage nozzle with the suction surface of the second stage nozzle was varied. At particular wake clocking alignments, the periodicity of wake induced transition was almost completely eliminated.


Author(s):  
Benjamin Winhart ◽  
Martin Sinkwitz ◽  
Andreas Schramm ◽  
Pascal Post ◽  
Francesca di Mare

Abstract In the proposed paper the transient interaction between periodic incoming wakes and the laminar separation bubble located on the rear suction surface of a typical, highly loaded LPT blade is investigated by means of highly resolved large-eddy simulations. An annular, large scale, 1.5-stage LPT test-rig, equipped with a modified T106 turbine blading and an upstream rotating vortex generator is considered and the numerical predictions are compared against hot film array measurements. In order to accurately assess both baseline transition and wake impact, simulations were conducted with unperturbed and periodically perturbed inflow conditions. Main mechanisms of transition and wake-boundary layer interaction are investigated utilizing a frequency-time domain analysis. Finally visualizations of the main flow structures and shear layer instabilities are provided utilizing the q-criterion as well as the finite-time Lyapunov exponent.


2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Luke S. Roberts ◽  
Mark V. Finnis ◽  
Kevin Knowles

The transition from a laminar to turbulent boundary layer on a wing operating at low Reynolds numbers can have a large effect on its aerodynamic performance. For a wing operating in ground effect, where very low pressures and large pressure gradients are common, the effect is even greater. A study was conducted into the effect of forcing boundary-layer transition on the suction surface of an inverted GA(W)-1 section single-element wing in ground effect, which is representative of a racing-car front wing. Transition to a turbulent boundary layer was forced at varying chordwise locations and compared to the free-transition case using experimental and computational methods. Forcing transition caused the laminar-separation bubble, which was the unforced transition mechanism, to be eliminated in all cases and trailing-edge separation to occur instead. The aerodynamic forces produced by the wing with trailing-edge separation were shown to be dependent on trip location. As the trip was moved upstream the separation point also moved upstream, this led to an increase in drag and reduction in downforce. In addition to significant changes to the pressure field around the wing, turbulent energy in the wake was considerably reduced by forcing transition. The differences between free- and forced-transition wings were shown to be significant, highlighting the importance of modeling transition for ground-effect wings. Additionally, it has been shown that while it is possible to reproduce the force coefficient of a higher Reynolds-number case by forcing the boundary layer to a turbulent state, the flow features, both on-surface and off-surface, are not recreated.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Jeffrey P. Bons ◽  
Daniel Reimann ◽  
Matthew Bloxham

Flow measurements were made on a highly loaded low pressure turbine blade in a low-speed linear cascade facility. The blade has a design Zweifel coefficient of 1.34 with a peak pressure coefficient near 47% axial chord (midloaded). Flow and surface pressure data were taken for Rec=20,000 with 3% inlet freestream turbulence. For these operating conditions, a large separation bubble forms over the downstream portion of the blade suction surface, extending from 59% to 86% axial chord. Single-element hot-film measurements were acquired to clearly identify the role of boundary layer transition in this separated region. Higher-order turbulence statistics were used to identify transition and separation zones. Similar measurements were also made in the presence of unsteady forcing using pulsed vortex generator jets just upstream of the separation bubble (50% cx). Measurements provide a comprehensive picture of the interaction of boundary layer transition and separation in this unsteady environment. Similarities between pulsed flow control and unsteady wake motion are highlighted.


Author(s):  
S. Nasir ◽  
J. S. Carullo ◽  
W. F. Ng ◽  
K. A. Thole ◽  
H. Wu ◽  
...  

This paper experimentally and numerically investigates the effect of large scale high freestream turbulence intensity and exit Reynolds number on the surface heat transfer distribution of a turbine vane in a 2-D linear cascade at realistic engine Mach numbers. A passive turbulence grid was used to generate a freestream turbulence level of 16% and integral length scale normalized by the vane pitch of 0.23 at the cascade inlet. The baseline turbulence level and integral length scale normalized by the vane pitch at the cascade inlet were measured to be 2% and 0.05, respectively. Surface heat transfer measurements were made at the midspan of the vane using thin film gauges. Experiments were performed at exit Mach numbers of 0.55, 0.75 and 1.01 which represent flow conditions below, near, and above nominal conditions. The exit Mach numbers tested correspond to exit Reynolds numbers of 9 × 105, 1.05 × 106, and 1.5 × 106, based on true chord. The experimental results showed that the large scale high freestream turbulence augmented the heat transfer on both the pressure and suction sides of the vane as compared to the low freestream turbulence case and promoted slightly earlier boundary layer transition on the suction surface for exit Mach 0.55 and 0.75. At nominal conditions, exit Mach 0.75, average heat transfer augmentations of 52% and 25% were observed on the pressure and suction side of the vane, respectively. An increased Reynolds number was found to induce earlier boundary layer transition on the vane suction surface and to increase heat transfer levels on the suction and pressure surfaces. On the suction side, the boundary layer transition length was also found to be affected by increase changes in Reynolds number. The experimental results also compared well with analytical correlations and CFD predictions.


Author(s):  
Yangang Wang ◽  
Qijie Shao ◽  
Wenbing Hu

The present paper performed a numerical study on a high-loaded and high turning compressor cascade, where the unsteady boundary layer transition behavior on the cascade blade undergoing negative jet flow is revealed. The two-equation SST turbulence model coupled with Langtry-Menter transition model is verified and applied on all the computations in present study. Reynolds number and turbulent intensity are selected as two dominate candidates which can significantly influence the transition behavior and their effect were examined. Results show that under all the tested case (i.e., varying Reynolds number and turbulence intensity), the flow structures on the suction surface of the blade are rolled up when the unsteady negative jet flow directly impacting on the blade. However, the unsteady wake from upstream has not influenced the boundary layer. For high Reynolds number (i.e., Re = 400,000) the rolling up and shed of the boundary layer only occurs at blade trailing edge. The wake is evidenced be able to bring more energy into the boundary layer and thus separation and loss can be significantly decayed and reduced. Moreover, decreasing the turbulent intensity would in practical decay the transition in the boundary layer and therefore make the boundary layer easy to separate.


Author(s):  
Nicole M. Wolgemuth ◽  
D. Keith Walters

This study analyzes the predicted flow over a NACA 0012 airfoil at varying angles of attack and three different Reynolds numbers. The ability of three different turbulence models to predict boundary layer separation and transition behavior is investigated. Particular interest is paid to prediction of the separation bubble that develops near the leading edge of the airfoil suction surface prior to stall. The FLUENT CFD solver was used to simulate turbulent airflow over the airfoil. The three turbulence models include the standard and realizable forms of the k-ε model, available in FLUENT, as well as a recently developed transition-sensitive k-ω model that was implemented into the solver using user-defined functions. By employing the new, transition-sensitive model, computed properties of the flow field were found to be closer to experimental data than results produced by utilizing built-in turbulence models. Most importantly, the new, transition-sensitive model predicts the occurrence of the separation bubble, which the other models are unable to predict. The new model also clearly reproduces the laminar, transitional, and turbulent flow that occurs over the airfoil.


Sign in / Sign up

Export Citation Format

Share Document