Design and Simulation of Three Degrees-of-Freedom Tracking Systems for Capsule Endoscope

2016 ◽  
Vol 138 (11) ◽  
Author(s):  
Ibrahim K. Mohammed

Wireless capsule endoscopes (WCE) are a new technology for inspection of the intestines, which offer many advantages over conventional endoscopes, while devices currently in use are passive and can only follow the natural transit of the intestines. There is a considerable interest in methods of controlled actuation for these devices. In this paper, an actuation system based on magnetic levitation is proposed, utilizing a small permanent magnet within the capsule and an arrangement of digitally controlled electromagnet placed on a movable frame. The objective of this paper is to design a multi-input multi-output (MIMO), three degrees-of-freedom (3DOF) tracking system for capsule endoscope. Two techniques, entire eigenstructure assignment (EEA) and linear quadratic regulator (LQR), are presented to design the controller of the system. The performance of the EEA and LQR controllers was compared based on the stability parameters to validate the proposed actuation system. Finally, simulation results suggest that the LQR approach can be used to synthesize a suitable and simple controller for this application.

Author(s):  
Eungkil Lee ◽  
Tao Sun ◽  
Yuping He

This paper presents a parametric study of linear lateral stability of a car-trailer (CT) combination in order to examine the fidelity, complexity, and applicability for control algorithm development for CT systems. Using MATLAB software, a linear yaw-roll model with 5 degrees of freedom (DOF) is developed to represent the CT combination. In the case of linear stability analysis, a parametric study was carried out using eigenvalue analysis based on a linear yaw-roll CT model with varying parameters. Built upon the linear stability analysis, an active trailer differential braking (ATDB) controller was designed for the CT system using the linear quadratic regulator (LQR) technique. The simulation study presented in this paper shows the effectiveness of the proposed LQR control design and the influence of different trailer parameters.


Author(s):  
M. Alizadeh ◽  
C. Ratanasawanya ◽  
M. Mehrandezh ◽  
R. Paranjape

A vision-based servoing technique is proposed for a 2 degrees-of-freedom (dof) model helicopter equipped with a monocular vision system. In general, these techniques can be categorized as image- and position-based, where the task error is defined in the image plane in the former and in the physical space in the latter. The 2-dof model helicopter requires a configuration-dependent feed-forward control to compensate for gravitational forces when servoing on a ground target. Therefore, a position-based visual servoing deems more appropriate for precision control. Image information collected from a ground object, with known geometry a priori, is used to calculate the desired pose of the camera and correspondingly the desired joint angles of the model helicopter. To assure a smooth servoing, the task error is parameterized, using the information obtained from the linearaized image Jacobian, and time scaled to form a moving reference trajectory. At the higher level, a Linear Quadratic Regulator (LQR), augmented with a feed-forward term and an integrator, is used to track this trajectory. The discretization of the reference trajectory is achieved by an error-clamping strategy for optimal performance. The proposed technique was tested on a 2-dof model helicopter capable of pitch and yaw maneuvers carrying a light-weight off-the-shelf video camera. The test results show that the optimized controller can servo the model helicopter to a hovering pose for an image acquisition rate of as low as 2 frames per second.


Author(s):  
Soukaina Krafes ◽  
Zakaria Chalh ◽  
Abdelmjid Saka

This paper presents a Backstepping controller for five degrees of freedom Spherical Inverted Pendulum. Since the system is nonlinear, unstable, underactuated and MIMO and has a nonsquare form, the classic control design cannot be applied to control it. In order to remedy this problem, we propose in this paper a new method based on hierarchical steps of the Backstepping controller taking into a count the nonlinearities that cannot be neglected. Furthermore, a Linear Quadratic Regulator controller and LQR + PID based on the linearized system model are also designed for performance comparison. Finally, a simulation study is carried out to prove the effectiveness of proposed control scheme and is validated using the virtual reality environment that proves the performance of the Backstepping controller over the linear ones where it brings the pendulum from any initial condition in the upper hemisphere while the base is brought to the origin of the coordinates.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Matteo Dentis ◽  
Elisa Capello ◽  
Giorgio Guglieri

The purpose of this paper is the design of guidance and control algorithms for orbital space maneuvers. A 6-dof orbital simulator, based on Clohessy-Wiltshire-Hill equations, is developed in C language, considering cold gas reaction thrusters and reaction wheels as actuation system. The computational limitations of on-board computers are also included. A combination of guidance and control algorithms for an orbital maneuver is proposed: (i) a suitably designed Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) algorithm is adopted for the guidance and (ii) a linear quadratic regulator (LQR) is used for the attitude control. The proposed approach is verified for different cases, including external environment disturbances and errors on the actuation system.


Author(s):  
Hui Yin ◽  
Ye-Hwa Chen ◽  
Dejie Yu

Controlling underactuated systems is a challenging problem in control engineering. This paper presents a novel constraint-following approach for control design of an underactuated two-wheeled mobile robot (2 WMR), which has two degrees-of-freedom (DOF) to be controlled but only one actuator. The control goal is to drive the 2 WMR to follow a set of constraints, which may be holonomic or nonholonomic constraints. The constraint is considered in a more general form than the previous studies on constraint-following control (hence including a wider range of constraints). No auxiliary variables or pseudo variables are required for the control design. The proposed control only uses physical variables. We show that the proposed control is able to deal with both holonomic and nonholonomic constraints by forcing the constraint-following error to converge to zero, even if the system is not initially on the constraint manifold. Using this control design, we investigate two cases regarding different constraints on the 2 WMR motion, one for a holonomic constraint and the other for a nonholonomic constraint. Simulation results show that the proposed control is able to drive the 2 WMR to follow the constraints in both cases. Furthermore, the standard linear quadratic regulator (LQR) control is applied as a comparison in the simulations, which reflects the advantage of the proposed control.


2020 ◽  
pp. 107754632097718
Author(s):  
Hossein Salmani ◽  
Milad Abbasi ◽  
Tondar Fahimi Zand ◽  
Mohammad Fard ◽  
Reza Nakhaie Jazar

A novel optimization technique was implemented to investigate the effects of vibrations on comfort of occupants to maintain oscillations in an acceptable zone in accordance with the International Organization for Standardization 2631 standard. In this regard, a newly introduced comfort indicator was defined as discomfort criterion (DiC). The effectiveness of the proposed measure was investigated throughout the suspension optimization of an in-wheel motor electric vehicle which almost doubled the unsprung mass by adding an electric motor to the wheel assembly. First, a spatial oscillatory model of the electric vehicle with eight degrees of freedom was developed, and the linear quadratic regulator control scheme is selected to control an actuator in an active suspension. Road excitations were then generated by applying the power spectral density of road class B–C provided by the International Organization for Standardization 8608 standard. The exceedance from the reduced comfort limit (in accordance with the International Organization for Standardization 2631 standard) and wheel travel (WT) of the vehicle were considered as design objectives. Finally, using a novel optimization procedure, the optimum condition and impact factor of the design variables, as well as counterplots of the design objectives with respect to the effective design parameters, were extracted and analyzed. Results proved the proposed indicator, that is, discomfort criterion (DiC) as a reliable measure to assess suspension systems’ performance effectively.


Author(s):  
Behrooz Mashadi ◽  
Meysam Gowdini

In this research, a gyroscopic device has been introduced for the purpose of vehicle handling enhancement. An optimal linear quadratic regulator controller (LQR) is designed based on the gyroscope–vehicle simple linear equations. This controller by using a gyroscope system is shown to enable the vehicle to follow the desired input. The desired vehicle dynamic motion is assumed in the form of the steady motion of the bicycle model. The desired motion for the gyroscope is a condition in which the gyroscope frame angular velocity is zero. A ten degrees-of-freedom (DOF) full vehicle model, consisting of 9DOF for the nonlinear vehicle model including the Magic Formula tire model and a nonlinear 1DOF gyroscope model, is used for the simulation purposes. In various maneuvers, the performance of the gyroscopic system with that of the conventional direct yaw moment control (DYC) system performance is compared. Simulation results show that on dry and slippery roads, the performances of gyroscope system and DYC are both desirable. On a μ-split road condition, DYC fails and is not effective whereas the gyroscope system has a very good performance.


Sign in / Sign up

Export Citation Format

Share Document