Joining Dissimilar Materials Using Friction Stir Scribe Technique

Author(s):  
Piyush Upadhyay ◽  
Yuri Hovanski ◽  
Saumyadeep Jana ◽  
Leonard S. Fifield

Development of a robust and cost-effective method of joining dissimilar materials could provide a critical pathway to enable widespread use of multimaterial designs and components in mainstream industrial applications. The use of multimaterial components such as steel-aluminum and aluminum-polymer would allow design engineers to optimize material utilization based on service requirements and could often lead to weight and cost reductions. However, producing an effective joint between materials with vastly different thermal, microstructural, and deformation responses is highly problematic using conventional joining and/or fastening methods. This is especially challenging in cost sensitive, high volume markets that largely rely on low cost joining solutions. Friction stir scribe (FSS) technology was developed to meet the demands of joining materials with drastically different properties and melting regimes. The process enables joining of light metals like magnesium and aluminum to high temperature materials like steel and titanium. Viable joints between polymer composites and metal can also be made using this method. This paper will present the state of the art, progress made, and challenges associated with this innovative derivative of friction stir welding (FSW) in reference to joining dissimilar metals and polymer/metal combinations.

2016 ◽  
Author(s):  
Piyush Upadhyay ◽  
Yuri Hovanski ◽  
Saumyadeep Jana ◽  
Leonard S. Fifield

Development of a robust and cost-effective method of joining dissimilar materials could provide a critical pathway to enable widespread use of multi-material designs and components in mainstream industrial applications. The use of multi-material components such as steel-aluminum and aluminum-polymer would allow design engineers to optimize material utilization based on service requirements and could often lead to weight and cost reductions. However, producing an effective joint between materials with vastly different thermal, microstructural, and deformation responses is highly problematic using conventional joining and/or fastening methods. This is especially challenging in cost sensitive, high volume markets that largely rely on low cost joining solutions. Friction stir scribe technology was developed to meet the demands of joining materials with drastically different properties and melting regimes. The process enables joining of light metals like magnesium and aluminum to high temperature materials like steel and titanium. Viable joints between polymer composites and metal can also be made using this method. This paper will present the state of the art, progress made, and challenges associated with this innovative derivative of friction stir welding in reference to joining dissimilar metals and polymer/metal combinations.


2021 ◽  
Vol 5 (4) ◽  
pp. 124
Author(s):  
Arnold Wright ◽  
Troy R. Munro ◽  
Yuri Hovanski

Reports in the literature indicate that temperature control in Friction Stir Welding (FSW) enables better weld properties and easier weld process development. However, although methods of temperature control have existed for almost two decades, industry adoption remains limited. This work examines single-loop Proportional-Integral-Derivative (PID) control on spindle speed as a comparatively simple and cost-effective method of adding temperature control to existing FSW machines. Implementation of PID-based temperature control compared to uncontrolled FSW in AA6111 at linear weld speeds of 1–2 m per minute showed improved mechanical properties and greater consistency in properties along the length of the weld under temperature control. Additionally, results indicate that a minimum spindle rpm may exist, above which tensile specimens do not fracture within the weld centerline, regardless of temperature. This work demonstrates that a straightforward, PID-based implementation of temperature control at high weld rates can produce high quality welds.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1301
Author(s):  
Federico Cavedo ◽  
Parisa Esmaili ◽  
Michele Norgia

A low-cost optical reflectivity sensor is proposed in this paper, able to detect the presence of objects or surface optical properties variations, at a distance of up to 20 m. A collimated laser beam is pulsed at 10 kHz, and a synchronous digital detector coherently measures the back-diffused light collected through a 1-inch biconvex lens. The sensor is a cost-effective solution for punctual measurement of the surface reflection at different distances. To enhance the interference immunity, an algorithm based on a double-side digital baseline restorer is proposed and implemented to accurately detect the amplitude of the reflected light. As results show, the sensor is robust against ambient light and shows a strong sensitivity on a wide reflection range. The capability of the proposed sensor was evaluated experimentally for object detection and recognition, in addition to dedicated measurement systems, like remote encoders or keyphasors, realized far from the object to be measured.


2006 ◽  
Vol 13 (06) ◽  
pp. 795-802 ◽  
Author(s):  
DANIEL LIM ◽  
ERNA GONDO SANTOSO ◽  
KIM MING TEH ◽  
STEPHEN WAN ◽  
H. Y. ZHENG

Silicon has been widely used to fabricate microfluidic devices due to the dominance of silicon microfabrication technologies available. In this paper, theoretical analyses are carried out to suggest suitable laser machining parameters to achieve required channel geometries. Based on the analyses, a low-power CO 2 laser was employed to create microchannels in Acrylic substrate for the use of manufacturing an optical bubble switch. The developed equations are found useful for selecting appropriate machining parameters. The ability to use a low-cost CO 2 laser to fabricate microchannels provides an alternative and cost-effective method for prototyping fluid flow channels, chambers and cavities in microfluidic lab chips.


2018 ◽  
Vol 5 (10) ◽  
pp. 181359 ◽  
Author(s):  
Samah Abo El Abass ◽  
Heba Elmansi

A green, sensitive and cost-effective method is introduced in this research for the determination of bambuterol and its main degradation product, terbutaline, simultaneously, relying on the synchronous spectrofluorimetric technique. First derivative synchronous spectrofluorimetric amplitude is measured at Δ λ = 20 nm, so bambuterol can be quantitated at 260 nm, and terbutaline can be measured at 290 nm, each at the zero crossing point of the other. The amplitude–concentration plots were linear over the concentration ranges of 0.2–6.0 µg ml −1 and 0.2–4.0 µg ml −1 for both bambuterol and terbutaline, respectively. Official guidelines were followed to calculate the validation parameters of the proposed method. The low values of limits of detection of 0.023, 0.056 µg ml −1 and limits of quantitation of 0.071, 0.169 µg ml −1 for bambuterol and terbutaline, respectively, point to the sensitivity of the method. Bambuterol is a prodrug for terbutaline, and the latter is considered its degradation product so the established method could be regarded as a stability-indicating one. Moreover, the proposed method was used for the analysis of bambuterol and terbutaline in their single ingredient preparations and the results revealed statistical agreement with the reference method. The suggested method, being a simple and low-cost procedure, is superior to the previously published methods which need more sophisticated techniques, longer analysis time and highly toxic solvents and reagents. It could be considered as an eco-friendly analytical procedure.


2016 ◽  
Vol 45 (2) ◽  
pp. 118-122
Author(s):  
G. Gopala Krishna ◽  
P.Ram Reddy ◽  
M.Manzoor Hussain

In recent year’s aluminium and aluminium alloys are most widely used in many applications because of light weight, good formability and malleability, corrosion resistance, moderate strength and low cost. Friction Stir Welding (FSW) process is efficient and cost effective method for welding aluminium and aluminium alloys. FSW is a solid state welding process that means the material is not melted during the process. Complete welding process accomplishes below the melting point of materials so it overcomes many welding defects that usually happens with conventional fusion welding technique which were initially used for low melting materials. Though this process is initially developed for low melting materials but now process is widely used for a variety of other materials including titanium, steel and also for composites. The present butt jointed FSW experimental work has been done in two ways. Initially a comparison of tensile properties of friction stir (FS) welded similar aluminium alloy (AA6351 with AA6351) and dissimilar aluminium alloy (AA6351 with AA5083) combinations. Later the effect of impurities (copper and brass) in sheet form (0.1 mm thick) when used as insert in between two dissimilar aluminium alloy (AA6351 with AA5083) plates during FSW. Tensile tests were performed for these combinations and results were compared for with and without using strip material (copper and brass).


Author(s):  
Kermit Davis ◽  
Susan Kotowski ◽  
Michael Jorgensen

With practitioners more often adopting job rotation practices in their facilities, there is an increased necessity for effective methods to measure the complex exposures in the diverse jobs that may be selected for a particular job rotation scheme. Potential methods need to be both versatile and simple, ensuring easy application and low cost. The current study developed and evaluated the potential of a video-based analysis method that combines the exposure measure of four body regions: neck, shoulder, low back, and hand/wrist. Three experienced analysts assessed the postural load for all jobs within fifteen different job rotation schemes at a manufacturing facility. Several potential indices were developed, computed and discussed. Overall, the video-based analyses evaluated in the current study provide an easy and cost effective method that allows a practitioner to compare multiple stressors at one time. Future work will evaluate the effectiveness of the method in actually controlling musculoskeletal disorders as well as incorporate other risk factor exposures such as forces, repetition and motion.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 156 ◽  
Author(s):  
Mingshen Li ◽  
Chaoqun Zhang ◽  
Dayong Wang ◽  
Li Zhou ◽  
Daniel Wellmann ◽  
...  

Aluminum (Al) and copper (Cu) have been widely used in many industrial fields thanks to their good plasticity, high thermal conductivity and excellent electrical conductivity. An effective joining of dissimilar Al and Cu materials can make full use of the special characteristics of these two metals. Friction stir spot welding (FSSW), as an efficient solid-state welding method suitable for joining of dissimilar metal materials, has great prospects in future industrial applications. In this paper, the FSSW studies on Al-Cu dissimilar materials are reviewed. The research progress and current status of Al-Cu FSSW are reviewed with respect to tool features, macroscopic characteristics of welded joints, microstructures, defects in welds and mechanical properties of joints. In addition, some suggestions on further study are put forward in order to promote the development and progress of Al-Cu FSSW studies in several respects: material flow, thermal history, addition of intermediate layer, auxiliary methods and functionalization of Al-Cu FSSW joint.


2016 ◽  
Vol 2016 (NOR) ◽  
pp. 12-16 ◽  
Author(s):  
Erja Sipilä ◽  
Johanna Virkki ◽  
Lauri Sydänheimo ◽  
Leena Ukkonen

The growth of the wireless world, especially the increasing popularity of the Internet of Things, has created a need for cost-effective and environmentally friendly electronics. Great potential lies especially in versatile applications of passive UHF RFID components. However, the reliability of these components is a major issue to be addressed. This paper presents a preliminary reliability study of glue-coated and non-coated brush-painted copper tags on a plywood substrate in high humidity conditions. The passive UHF RFID components presented in this paper are fabricated using brush-painting and photonic sintering of cost-effective copper oxide ink directly on a plywood substrate. The performance of the glue-coated and non-coated tags is evaluated through wireless tag measurements before and after high humidity testing. The measurement results show that the copper tags on plywood substrate initially achieve peak read ranges of 7–8 meters and the applied coating does not affect to the read range. Moisture does not prevent the coated tags from working in a tolerable way, although the tag performance slightly temporarily decreases due to the moisture absorption. However, when the moisture exposure is long, the performance degradation comes irreversible. The absorbed moisture decreases the read range of the non-coated tags and the performance does not return back to normal after drying. Hence, the coating improves the reliability of the tags in a moist environment compared to the non-coated tags. Based on our results, the plywood material and the used manufacturing methods are very potential for low-cost, high-volume green electronics manufacturing.


1995 ◽  
Vol 11 (01) ◽  
pp. 15-21
Author(s):  
Richard B. Cooper ◽  
Terry J. Reelr

Education and Training Panel SP-9's 1991 report, "Recommendations on the Use of Interactive Instruction for Training Shipyard Trade Skills," indicates that although very few American shipyards have used it or are familiar with it, interactive multimedia has great potential as a low-cost, effective method for the training of skilled trade tasks. These findings led SP-9 to develop an interactive lesson that demonstrates how interactive multimedia can be integrated into shipyard training programs to reduce training costs, increase productivity, promote quality awareness, and improve worker competence. The demonstration combines computer graphics, animation, still and motion video, sound, and touchscreen interaction to demonstrate the broad spectrum of the interactive multimedia technology. This paper describes the project as an example of how shipyard training departments can develop their own interactive multimedia courseware by determining appropriate applications of the technology; selecting the most suitable hardware and authoring system for delivering the instruction; researching, planning and designing the lessons; and shooting the video, authoring the courseware, and integrating them into an effective interactive multimedia course.


Sign in / Sign up

Export Citation Format

Share Document