scholarly journals The Effect of Copper and Brass on Friction Stir Welded Dissimilar Aluminium Alloy When Used as in Thin Sheet Form

2016 ◽  
Vol 45 (2) ◽  
pp. 118-122
Author(s):  
G. Gopala Krishna ◽  
P.Ram Reddy ◽  
M.Manzoor Hussain

In recent year’s aluminium and aluminium alloys are most widely used in many applications because of light weight, good formability and malleability, corrosion resistance, moderate strength and low cost. Friction Stir Welding (FSW) process is efficient and cost effective method for welding aluminium and aluminium alloys. FSW is a solid state welding process that means the material is not melted during the process. Complete welding process accomplishes below the melting point of materials so it overcomes many welding defects that usually happens with conventional fusion welding technique which were initially used for low melting materials. Though this process is initially developed for low melting materials but now process is widely used for a variety of other materials including titanium, steel and also for composites. The present butt jointed FSW experimental work has been done in two ways. Initially a comparison of tensile properties of friction stir (FS) welded similar aluminium alloy (AA6351 with AA6351) and dissimilar aluminium alloy (AA6351 with AA5083) combinations. Later the effect of impurities (copper and brass) in sheet form (0.1 mm thick) when used as insert in between two dissimilar aluminium alloy (AA6351 with AA5083) plates during FSW. Tensile tests were performed for these combinations and results were compared for with and without using strip material (copper and brass).

Mechanika ◽  
2020 ◽  
Vol 26 (6) ◽  
pp. 545-552
Author(s):  
Sasi Lakshmikhanth RAJASEELAN ◽  
Subbaiah KUMARASAMY

Solidification is one of the major issues that was faced during the fusion welding of dissimilar non-heat treatable and heat treatable aluminium alloys. To overcome this issue Friction Stir Welding played a very vital role, since it is a solid state welding process. In the current study, dissimilar friction stir welding was carried out between non heat-treatable aluminium alloy AA5083-H111 and heat-treatable aluminium alloy AA6061-T6. The microstructural analysis and the mechanical properties of the dissimilar friction stir welded aluminium alloy AA5083-H111 and AA6061-T6 have been investigated. Both optical microscopy and scanning electron microscopy was used to evaluate the microstructural features. The elemental analysis was carried out using SEM-EDX. The tensile properties are studied using Universal Testing Machine. Hardness at various zones of the welded joints was measured using Vicker’s Hardness Testing Machine. The mechanical properties of the friction stir welded joints were correlated with the microstructure of the dissimilar welded joints.


2011 ◽  
Vol 415-417 ◽  
pp. 1140-1146 ◽  
Author(s):  
R. Palanivel ◽  
P. Koshy Mathews ◽  
M. Balakrishnan ◽  
I. Dinaharan ◽  
N. Murugan

Aluminium alloys generally has low weldability by traditional fusion welding process. The development of the Friction Stir Welding (FSW) has provided an alternative improved way of producing aluminium joints, in a faster and reliable manner. FSW process has several advantages, in particular the possibility to weld dissimilar aluminium alloys. This study focuses on the behavior of tensile strength of dissimilar joints of AA6351-T6 alloy to AA5083-H111 alloy produced by friction stir welding was analysed. Five different tool pin profile such as Straight Square (SS), Tapered Square (TS), Straight Hexagon (SH), Straight Octagon (SO) and Tapered Octagon (TO) with three different axial force (1tonne, 1.5tonne, 2 tonne) have been used to weld the joints. The effect of pin profiles and axial force on tensile properties and material flow behaviour of the joint was analyzed and it was found that the straight square pin profile with 1.5 tonne produced better tensile strength then other tool pin profile and axial force.


2016 ◽  
Vol 835 ◽  
pp. 191-196 ◽  
Author(s):  
Kookil No ◽  
Ye Rim Lee ◽  
Jong Hoon Yoon ◽  
Joon Tae Yoo ◽  
Ho Sung Lee

Friction stir welding is a widely used welding process for aluminum alloys because it avoids many of the problems of conventional fusion welding. This process is beneficial especially for lithium containing aluminum alloys in which the reactive property of element Li causes porosity and hot cracking during melting and solidification. In friction stir welding process, each region undergoes different thermo-mechanical cycles and produces a non-homogeneous microstructure. In the present study, the mechanical properties and microstructure of a 2195-T8 aluminum alloy joined with friction stir welding were investigated. The change in microstructure across the welded joint was found to correspond to microhardness measurement. The microstructure was characterized by the presence of severely deformed grains and fine recrystallized grains depending on the region. Tensile tests shows the optimum condition was obtained at the tool rotating speed of 600rpm and the traveling speed range from 180 to 300mm/min.


Friction stir welding has proven to be the most promising solid state joining process. It can be used to get high weldability in joining of high strength aerospace aluminium alloys and other metallic alloys which used to be low with traditional fusion welding process. This paper emphasises on finding the optimum process parameter for friction stir welding of dissimilar aluminium alloy AA6061 to AA5183 using multi criteria decision making method (MCDM). Friction stir welding was done at different tool rotational speed and transverse velocity and mechanical properties such as tensile strength, percentage elongation and hardness were studied for each weld specimen. Finally optimization was done using TOPSIS (Techniqueof Ordered Preference by Similarity to Ideal Solution). The result revealed that the tool rotational speed of 1200 rpm and welding speed of 80mm/min are the optimum welding parameters.


2013 ◽  
Vol 554-557 ◽  
pp. 977-984 ◽  
Author(s):  
Gianluca D'Urso ◽  
Michela Longo ◽  
Claudio Giardini

Friction stir welding (FSW) has received increasing attention in recent years thanks to its advantages over traditional welding processes, reducing distortion and eliminating solidification defects. Since melting does not take place and joining occurs below the melting temperature of the material, this welding process allows to obtain a weld characterized by very high quality with low heat input, minimal distortion, no filler material, and no fumes. FSW is also highly efficient and it is characterized by improved environmental performance if compared to traditional welding methods. For instance, FSW is particularly advantageous in the pipeline industry because this innovative welding process usually entails reduction in energy usage of up to 80% if compared to conventional fusion welding processes. Moreover, also alloys normally difficult to be welded can be considered with this technique. The objective of the present study is to establish and to study the weldability of aluminum tubes by means of FSW process. The study shows preliminary results on circumferential FSW of AA6060-T6 aluminum tubes and the influence of the welding process on weld quality. The experimental campaign was performed on tubes having a thickness equal to 5 mm and an external diameter equal to 80 mm. Tubes were welded by means of a four axes CNC machine tool. Particular care was paid to the fabrication of the inner support for the tube. The mandrel was designed in order to guarantee limited bending during the welding process. Some preliminary tests were carried out by varying the welding parameters, namely feed rate (f) and rotational speed (S). A tool having conical shoulder and cylindrical pin was used. The weld quality investigation was based on tensile tests, microhardness and macrostructure analysis of the joints.


2019 ◽  
Vol 8 (2S3) ◽  
pp. 1625-1629

Friction stir welding has proven to be the most promising solid state joining process. It can be used to get high weldability in joining of high strength aerospace aluminium alloys and other metallic alloys which used to be low with traditional fusion welding process. This paper emphasises on finding the optimum process parameter for friction stir welding of dissimilar aluminium alloy AA6061 to AA5183 using multi criteria decision making method (MCDM). Friction stir welding was done at different tool rotational speed and transverse velocity and mechanical properties such as tensile strength, percentage elongation and hardness were studied for each weld specimen. Finally optimization was done using TOPSIS (Techniqueof Ordered Preference by Similarity to Ideal Solution). The result revealed that the tool rotational speed of 1200 rpm and welding speed of 80mm/min are the optimum welding parameters


2015 ◽  
Vol 813-814 ◽  
pp. 446-450 ◽  
Author(s):  
K. Palani ◽  
C. Elanchezhian

The friction stir welding process is the newly developed material joining process used to join the different materials which are very difficult to join in the conventional fusion welding process. In this investigation using the specially designed straight cam profiled tool, the multiple responses of Ultimate tensile strength, Ultimate yield strength and Percentage of elongation with the process parameters of rotational speed, tool tilt angle and feed rate are optimized. The five level, three factor rotatable central composite design is selected to optimize the responses of friction stir welded AA 8011 aluminium alloys. The highest gray relational grade with the highest relative efficiency is found using the gray relational analysis coupled with the data envelopment analysis to predict the optimum parameters. It exposes that at the rotational speed of 680 rpm, the tool tilt angle of 98 degrees and the feed rate of 24 mm/min the good weld quality can be attained.


2018 ◽  
Vol 81 (1) ◽  
Author(s):  
Nor Fazilah Mohd Selamat ◽  
Amir Hossein Baghdadi ◽  
Zainuddin Sajuri ◽  
Amir Hossein Kokabi

Friction stir welding (FSW) is a gateway for the implementation of a solid state joining method between two lightweight materials especially aluminium alloys. Dissimilar joints of aluminium alloys have an issue to be weld using the conventional fusion welding. In the present work, two types of dissimilar joints of aluminium alloys were welded as dissimilar butt joints using the FSW method. 5mm thick base metals, consist of AA1100, AA5083 and AA6061, were butt welded to dissimilar joints of AA6061-AA1100 and AA6061-AA5083. Similar welding parameter was used for both of the joints, in which 100 mm/min and 1000 rpm for transverse and rotation speed, respectively. Joints were successful with defect-free internally and externally. However, different flow patterns were observed in the stirred zone due to the different materials flow during the FSW process. The ultimate tensile strength of AA6061-AA1100 and AA6061-AA5083 are 93MPA and 113MPa. Thereby, the joint efficiency of AA6061-AA1100 and AA6061-AA5083 were 80% and 97% compared to AA6061 base metal, respectively.


2006 ◽  
Vol 519-521 ◽  
pp. 1125-1130 ◽  
Author(s):  
R. Ilyushenko ◽  
V. Nesterenkov

One of the “show stoppers” in fusion welding of highly alloyed aerospace aluminium alloys is their susceptibility for liquation cracking in the weld heat-affected zone. Liquation cracking is a microscopic intergranular discontinuity, which occurs under the effect of welding thermal cycle and in the presence of stresses involved with the welding process. These intergranular discontinuities are often observed in welding of thick plates and extrusions, which usually have relatively coarse elongated grains, that are generally oriented parallel to each other. Friction Stir Welding (FSW) is a low temperature non- fusion process, which produces very fine equiaxed grain structure in the weld nugget for majority of Al-alloys. It was found that bead-onplate FS welds performed on alloy, which in fusion welding is susceptible to liquation cracking, were crack free. It was therefore proposed to use FSW for grain refining of the parent material by putting a number of overlapping FS welds onto the edges of both parent plates prior to joining by fusion welding. Experimentation has shown that there was no liquation cracking after the final weld was performed. This novel welding method has been successfully proven for Electron Beam Welding (EBW) of various Al-alloys including joining of dissimilar materials. The details of experiments as well as welded coupons test results are presented.


Fusion welding of aluminium alloys results in solidification cracking, porosity etc. which affects the properties of the weldment. FSW which is broadly used in welding of aluminium alloys. It overcomes the defects of fusion welding process in improving the properties of the joints. The current paper focus on studying the tensile properties of the disparate FSW of aluminium alloys AA6082 and A319 .Three dissimilar tool profiles (square, hexagonal and cylindrical) with three welding speeds (25, 30, 35 mm/min) and three tool rotational speeds (800, 1000 and 1300 rpm) have been used in studying the joint properties of the weld. Higher tensile strength was obtained for the parameters of square tool profile, 30 mm/min and 1300 rpm.


Sign in / Sign up

Export Citation Format

Share Document